Claim Missing Document
Check
Articles

IMPLEMENTASI KODE HUFFMAN DALAM APLIKASI KOMPRESI TEXT PADA LAYANAN SMS Reswan, Yuza; Agung Prabowo, Dedy
Jurnal Rekayasa Sistem Informasi dan Teknologi Vol. 1 No. 1 (2023): Agustus
Publisher : Yayasan Nuraini Ibrahim Mandiri

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.59407/jrsit.v1i1.73

Abstract

Layanan SMS merupakan cara pengiriman pesan singkat dalam waktu cepat dengan relative murah, pesan singkat yang akan dikirimkan dengan kapasitas maksimal 140 byte untuk setiap pesan. Untuk mangatasi kesulitan penyampaian pesan dengan jumlah karakter banyak ataupun karakter dengan bit besar, maka dibuatlah suatu aplikasi untuk melakukan kompresi teks dengan menggunakan algoritma Huffman. Aplikasi kompresi SMS merupakan serangkaian proses yang berupa kompresi pengiriman, penerimaan dan, penampilan. Proses kompresi itu sendiri merupakan suatu proses encoding yang akan menjadikan suatu data atau teks memiliki bit lebih kecil dari biasanya. Proses encoding dengan kode Huffman merupakan kode yang dibentuk berdasarkan frekuensi, kekerapan, yang muncul untuk suatu karakter  dengan kekerapan kecil. Pembentukan kode Huffman dimulai dengan suatu pohon Huffman. Proses ini dilanjutkan dengan melakukan proses encoding terhadap karakter tersebut  sesuai dengan kode Huffman yang ada. Setelah tersampaikan proses decoding dilanjutkan agar pesan dapat di baca kembali. Kata Kunci: Kode Huffman, SMS.
Aplikasi Pencari Tempat Magang Berbasis Android Menggunakan Metode Agile Scrum Firdaus, Ammar Musthofa; Prabowo, Dedy Agung
Jurnal Informatika UPGRIS Vol 8, No 1: Juni 2022
Publisher : Universitas PGRI Semarang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.26877/jiu.v8i1.12029

Abstract

Internship is a process that is an obligation to be carried out in the academic process at the Telkom Institute of Technology Purwokerto, however with various media sources used in finding internships, students have problems in finding suitable internships. This study aims to apply Agile Scrum and Simple Additive Weighting in making applications to find a suitable internship place. Agile Scrum is used as a method of continuous application development, Simple Additive Weighting is used as a method in determining recommendations based on existing input. Application testing is carried out using Black Box Testing which tests the success of the function in carrying out its scenario and User Acceptance Test which is used as a benchmark in the suitability of the application with user needs. The results of this study are an android application in the form of an apk that was tested using Black Box Testing and got valid results in all scenarios and had a score of 87% on the User Acceptance Test
Analisis Sentimen Berbasis Aspek pada Layanan Hotel di Wilayah Kabupaten Banyumas dengan Word2Vec dan Random Forest Wijayanto, Sena; Prabowo, Dedy Agung; Kristiyanto, Daniel Yeri; Fathoni, M Yoka
Jurnal Informatika: Jurnal Pengembangan IT Vol 8, No 1 (2023)
Publisher : Politeknik Harapan Bersama

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30591/jpit.v8i1.4186

Abstract

Dalam industri pariwisata, hotel memiliki peran penting untuk membantu wisatawan karena menyediakan penginapan terutama bagi wisatawan dari luar kota. Kualitas layanan hotel dapat dilihat dari opini-opini yang diberikan ooleh pengunjung yang telah menginap di hotel tersebut. Penelitian ini bertujuan untuk melakukan analisis sentimen terhadap ulasan yang diberikan oleh pengunjung hotel. Data ulasan tersebut diambil dari Traveloka menggunakan web scrapping. Metode yang digunakan untuk ekstraksi fitur adalah word2vec. Untuk klasifikasi sentimen, metode yang digunakan adalah random forest. Hasil percobaan terbaik didapatkan dari hasil percobaan dengan menggunakan jumlah tree 100, 200, dan 300 dengan hasil akurasi sebesar 82%-83%.
Analisis Kinerja Rantai Pasok Produk Kedelai Menggunakan Metode Supply Chain Operation Reference Fathoni, M Yoka; Prabowo, Dedy Agung; Wijayanto, Sena; Fernandez, Sandhy; Susanto, Ardi
Jurnal Informatika: Jurnal Pengembangan IT Vol 7, No 2 (2022)
Publisher : Politeknik Harapan Bersama

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30591/jpit.v7i2.3740

Abstract

Indonesia is a country that has one of the advantages, namely as the largest agricultural country that has natural wealth, one of which is the agricultural sector. Soybean is one of the most widely grown crops in Indonesian agriculture and is included in the legumes group which has the highest vegetable protein content when compared to other types of beans such as red beans, green beans, and peanuts. The use of the SCOR method in this study is to measure good SCM performance, because SCOR divides supply chain processes into five 5 core processes, namely plan, source, make, deliver and return, where these processes have represented all supply chain activities. management from upstream to downstream in detail, so that it can define and categorize the measurement indicators needed in measuring Supply Chain Management performance. Based on the SCOR method, the results of the calculation of the final performance value of the soybean supply chain in the province of Central Java are 76.8 out of 100 which are in the "good" category.
Klasifikasi Kekeringan dan Penyakit pada Daun Padi Berdasarkan Ekstraksi Ciri Warna dan Tekstur Menggunakan CSPDarknet: Klasifikasi Kekeringan dan Penyakit pada Daun Padi Berdasarkan Ekstraksi Ciri Warna dan Tekstur Menggunakan CSPDarknet Abdul Jabbar Robbani; Dwi Putro Wicaksono, Aditya; Dedy Agung Prabowo
POSITIF : Jurnal Sistem dan Teknologi Informasi Vol 11 No 1 (2025): Positif : Jurnal Sistem dan Teknologi Informasi
Publisher : P3M Politeknik Negeri Banjarmasin

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.31961/positif.v11i1.14964

Abstract

The decline in rice productivity in Indonesia is often caused by drought and leaf diseases that are difficult to detect early. This condition requires a technology-based classification system that is able to provide fast and accurate diagnosis as support for decision making in the agricultural sector. This study aims to develop a rice leaf image classification model using the CSPDarknet architecture, with a color and texture feature extraction approach. The dataset used is the result of primary documentation that has gone through an augmentation process to increase the diversity of training data. The model architecture consists of a CSPDarknet backbone combined with a Cross-stage Partial Bottleneck with two Convolutions (C2f) block, Spatial Pyramid Pooling - Fast (SPPF), Global Average Pooling, and dropout to improve model generalization. Training was carried out using the Stratified 5-Fold Cross-Validation method and three optimizer variations, namely Stochastic Gradient Descent (SGD), Adam, and AdamW. The experimental results showed that the best model combination was achieved with the AdamW optimizer, with an average accuracy value of 99.72%, precision of 99.73%, recall of 99.72%, and F1-score of 99.72%. These findings indicate that the proposed classification approach is able to effectively distinguish healthy, diseased, and drought-affected leaves. In the future, this model has the potential to be further developed through the integration of Raspberry Pi-based Internet of Things (IoT) devices for real-time monitoring of plant conditions in the field.