Claim Missing Document
Check
Articles

Perbandingan Metode Particle Swarm Optimization dan Artificial Bee Colony pada Support Vector Machine Hasibuan, Rafika Aufa; Afendi, Farit Mochamad; Wigena, Aji Hamim
JEPIN (Jurnal Edukasi dan Penelitian Informatika) Vol 11, No 1 (2025): Volume 11 No 1
Publisher : Program Studi Informatika

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.26418/jp.v11i1.91235

Abstract

Optimasi metode klasifikasi merupakan aspek krusial dalam meningkatkan akurasi model, terutama dalam analisis data medis yang kompleks dan memiliki karakteristik peubah yang beragam. Penelitian ini membandingkan performa klasifikasi dari Support Vector Machine (SVM) konvensional dengan dua metode optimasi berbasis metaheuristik yaitu, PSO-SVM dan ABC-SVM. Evaluasi dilakukan pada empat dataset medis, yaitu Breast Cancer, AIDS Disease, Darwin Disease, dan Parkinson Disease, dengan variasi seleksi peubah berbasis proporsi sebesar 30%, 50%, 70% dan 100% dari total peubah pada masing-masing dataset. Hasil penelitian menunjukkan bahwa metode PSO-SVM dan ABC-SVM secara konsisten mampu meningkatkan akurasi klasifikasi dibandingkan SVM standar. Pada beberapa dataset seperti Breast Cancer dan Parkinson Disease, akurasi meningkat dari 96,22% dan 85,53% (SVM) menjadi 100% dengan metode PSO-SVM dan ABC-SVM. Pada dataset AIDS Disease, akurasi meningkat dari 87,36% menjadi 100%. Sementara itu, pada dataset Darwin Disease yang memiliki tingkat overlap tertinggi (OV = 0,99727), peningkatan akurasi lebih terbatas, dari 83,76% (SVM) menjadi 91,65% (ABC-SVM). Proporsi terbaik yang ditemukan bervariasi antar dataset. Namun secara umum proporsi 70% dan 100% menunjukkan hasil akurasi yang paling stabil dengan waktu komputasi yang efisien pada PSO-SVM. Sedangkan pada ABC-SVM, peningkatan akurasi yang tinggi disertai waktu eksekusi yang jauh lebih besar, terutama pada dataset berdimensi tinggi. Analisis lebih lanjut juga menunjukkan bahwa metode optimasi efektif dalam mengatasi tantangan overlapping dan ketidakseimbangan kelas secara moderat, namun efektivitasnya menurun pada kondisi yang lebih kompleks. Dengan demikian, penggunaan metode optimasi PSO-SVM dan ABC-SVM dapat menjadi pendekatan yang efisien untuk meningkatkan akurasi klasifikasi data medis, selama disesuaikan dengan karakteristik data dan sumber daya komputasi yang tersedia.
Performance Analysis of Robust Functional Continuum Regression to Handle Outliers Ismah, Ismah; Erfiani, Erfiani; Wigena, Aji Hamim; Sartono, Bagus
InPrime: Indonesian Journal of Pure and Applied Mathematics Vol. 6 No. 1 (2024)
Publisher : Department of Mathematics, Faculty of Sciences and Technology, UIN Syarif Hidayatullah

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.15408/inprime.v6i1.38928

Abstract

Robust functional continuum regression (RFCR) is an innovation as a development of functional continuum regression that can be applied to functional data and is resistant to outliers. The resistance of RFCR depends on the applied weighting function. This study aims to evaluate the RFCR performance to handle outliers. We propose the various weighting functions in this evaluation, i.e., Huber, Hampel, Ramsay, and Tukey (Bisquare), which do not eliminate or give zero weight to observed data identified as outliers. This contribution is essential to determining the appropriate RFCR method without eliminating the outlier data. The result shows that the RFCR performance with the Huber weighting function is better than the others, based on the goodness of fit, consisting of the root means square error of prediction (RMSEP), the correlation between the actual data and the model, and the mean absolute error (MAE).Keywords: functional data analysis; Huber weighted function; Hampel weighted function; Ramsay weighted function; Tukey (Bisquare) weighted function. AbstrakRegresi kontinum fungsional kekar (RFCR) merupakan inovasi yang merupakan pengembangan dari regresi kontinum fungsional yang dapat diaplikasikan pada data fungsional dan tahan terhadap outlier. Resistansi RFCR bergantung pada fungsi pembobotan. Penelitian ini bertujuan untuk mengevaluasi kinerja RFCR. Kami mengusulkan beberapa fungsi pembobotan dalam evaluasi tersebut, yaitu Huber, Hampel, Ramsay, dan Tukey (Bisquare), dengan tidak menghilangkan atau memberikan bobot nol pada data observasi yang teridentifikasi sebagai outlier. Kontribusi ini penting untuk menentukan metode RFCR yang tepat tanpa menghilangkan data outlier. Hasil menunjukkan bahwa kinerja RFCR dengan fungsi pembobotan Huber lebih baik dibandingkan fungsi pembobotan lain berdasarkan goodness of fit, yang terdiri dari root mean square error of prediksi (RMSEP), korelasi antara data aktual dan model, dan mean kesalahan absolut (MAE).Kata Kunci: analisis data fungsional; fungsi berbobot Huber; fungsi tertimbang Hampel; fungsi tertimbang Ramsay; fungsi berbobot Tukey (Bisquare). 2020MSC: 62J99, 62R10
Comparison of Discriminant Analysis and Support Vector Machine on Mixed Categorical and Continuous Independent Variables for COVID-19 Patients Data Haikal, Husnul Aris; Wigena, Aji Hamim; Sadik, Kusman; Efriwati, Efriwati
Scientific Journal of Informatics Vol 11, No 1 (2024): February 2024
Publisher : Universitas Negeri Semarang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.15294/sji.v11i1.48565

Abstract

Purpose: Numerous factors can affect the duration of COVID-19 recovery. One method involves utilizing natural herbal medication. This study seeks to determine the variables influencing the duration of COVID-19 recovery and to compare discriminant analysis and support vector machine models using COVID-19 patient data from West Sumatra.Methods: Two data mining methods, Discriminant Analysis and Support Vector Machine with different types of kernels (linear, polynomial, and radial basis function), were employed to categorize the time of COVID-19 recovery in this work. The study utilized 428 data points, with 75% allocated for training data and 25% for testing data. The independent factors were evaluated by determining the selection variables' information value (IV) to gauge their influence on the dependent variable. Data resampling techniques were employed to tackle the problem of data imbalance. This study employs data resampling techniques, including undersampling, oversampling, and SMOTE. The balancing accuracy of Discriminant Analysis and Support Vector Machine was examined.Result: The Discriminant Analysis with SMOTE achieved a balanced accuracy of 66.50%, outperforming the linear kernel Support Vector Machine with SMOTE, which had a balanced accuracy of 63.20% in this dataset.Novelty: This study assessed the novelty, originality, and value by comparing Discriminant Analysis and SVM algorithms with categorical and continuous independent variables. This research explores techniques for managing imbalanced data using undersampling, oversampling, and SMOTE, with variable selection based on information value assessment.