Claim Missing Document
Check
Articles

Found 4 Documents
Search
Journal : JOIV : International Journal on Informatics Visualization

Arabic Character Recognition Using CNN LeNet-5 Satya Nugraha, Gibran; Suta Wijaya, I Gede Pasek; Bimantoro, Fitri; Yudo Husodo, Ario; Hamami, Faqih
JOIV : International Journal on Informatics Visualization Vol 7, No 4 (2023)
Publisher : Society of Visual Informatics

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.62527/joiv.7.4.2422

Abstract

The human handwriting pattern is one of the research areas of pattern recognition; it is very complex. Therefore, research in this field has become quite popular. Moreover, human handwriting pattern recognition is needed for several things, one of them being character recognition. Recognition of Arabic handwriting is complex because everyone has different characteristics in writing and Arabic characters have quite abstract shapes and patterns. From previous research, Convolutional Neural Network (CNN), a deep learning-based algorithm, has a fairly high accuracy value when used for public datasets such as AHDB and private datasets. In this study, private datasets are used with a fairly high level of complexity because the respondents appointed to write Arabic letters come from different age categories. The CNN architecture used in this research is the architecture developed by Yan LeCun known as LeNet-5. The local dataset used was 8400 images, with details of 6720 for training data (each letter has 240 images) and 1680 for testing data (each letter has 60 images). The total respondents who wrote Arabic script were 30 people, and each person wrote each letter ten times. The accuracy obtained is 81% higher than in previous studies. The following study will test a number of additional CNN architectures to increase the accuracy of the results. In addition to accuracy, this study will also calculate the misclassification rate, root mean square error, and mean absolute error.
Early Detection of Asymptomatic Covid-19 Infection with Artificial Neural Network Model Through Voice Recording of Forced Cough Nisa, Aisyah Khairun; Wijaya, I Gede Pasek Suta; Aranta, Arik
JOIV : International Journal on Informatics Visualization Vol 7, No 2 (2023)
Publisher : Society of Visual Informatics

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30630/joiv.7.2.1812

Abstract

SARS-CoV-2 is a virus that spreads the infection known as COVID-19, or Coronavirus 2019. According to data from the World Health Organization as of March 15, 2021, Indonesia has 1,419,455 cumulative cases and 38,426 cumulative deaths, ranking third among countries in terms of fatalities, behind Iran and India. Because COVID-19 was disseminated through direct contact with respiratory droplets from an infected individual, it spread swiftly and widely. According to the American Centers for Disease Control and Prevention, more than 50% of transmission rates are anticipated from asymptomatic individuals. The antigen tests have an accuracy of results ranging from 80–90% and are utilized for early detection of COVID-19. The cost of the antigen test is set to increase as of September 3, 2021, with prices ranging from IDR 99.000 to IDR 109.000; however, researchers are steadfastly searching for the best alternate methods for the early diagnosis of COVID-19. According to MIT News Office, a forced cough recording can identify an asymptomatic COVID-19 infection. Through the vocal recording of a forced cough, this study uses an artificial neural network (ANN) deep learning model to identify asymptomatic COVID-19 patients. The Artificial Neural Network (ANN) can distinguish asymptomatic people from forced cough recordings with an accuracy of up to 98% and a loss value of less than 3% by employing oversampling data. This model can be applied as a free, universal method for the early identification of COVID-19 infection.
Analyzing Coverage Probability of Reconfigurable Intelligence Surface-aided NOMA Widodo, Agung Mulyo; Wijayanto, Heri; Wijaya, I Gede Pasek Suta; Wisnujati, Andika; Musnansyah, Ahmad
JOIV : International Journal on Informatics Visualization Vol 7, No 3 (2023)
Publisher : Society of Visual Informatics

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30630/joiv.7.3.2054

Abstract

Along with the explosive growth of wireless communication network users who require large frequency bands and low latency, it is a challenge to create a new wireless communication network beyond 5G. This is because installing a massive 5G network requires a large investment by network providers. For this reason, the authors propose an alternative beyond 5G that has better quality than 5G and a relatively lower investment value than 5G networks. This study aims to analyze the downlink of the cooperative non-orthogonal multiple access (NOMA) network, which is usually used in 5G, combined with the use of a reconfigurable intelligence surface (RIS) antenna with decode and forward relay mechanisms. RIS is processed with a limited number of objects utilizing Rayleigh fading channels. The scenario is created by a user who relays without a direct link for users near the base station and with a direct link for users far from the base station. Under the Nakagami-m fading channel, the authors carefully evaluated the probability of loss for various users as a function of perfect channel statistical information (p-CSI) utilizing simply a single input-output (SISO) system with a finite number of RIS elements. As a key success metric, the efficiency of the proposed RIS-assisted NOMA transmission mechanism is evaluated through numerical data on the outage probability for each user. The modeling outcomes demonstrate that the RIS-aided NOMA network outperforms the traditional NOMA network
The Design of Convolutional Neural Networks Model for Classification of Ear Diseases on Android Mobile Devices Suta Wijaya, I Gede Pasek; Mulyana, Heru; Kadriyan, Hamsu; Fa'rifah, Riska Yanu
JOIV : International Journal on Informatics Visualization Vol 7, No 1 (2023)
Publisher : Society of Visual Informatics

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30630/joiv.7.1.1591

Abstract

An otorhinolaryngologist (ORL) or general practitioner diagnoses ear disease based on ear image information. However, general practitioners refer patients to ORL for chronic ear disease because the image of ear disease has high complexity, variety, and little difference between diseases. An artificial intelligence-based approach is needed to make it easier for doctors to diagnose ear diseases based on ear image information, such as the Convolutional Neural Network (CNN). This paper describes how CNN was designed to generate CNN models used to classify ear diseases. The model was developed using an ear image dataset from the practice of an ORL at the University of Mataram Teaching Hospital. This work aims to find the best CNN model for classifying ear diseases applicable to android mobile devices. Furthermore, the best CNN model is deployed for an Android-based application integrated with the Endoscope Ear Cleaning Tool Kit for registering patient ear images. The experimental results show 83% accuracy, 86% precision, 86% recall, and 4ms inference time. The application produces a System Usability Scale of 76.88% for testing, which shows it is easy to use. This achievement shows that the model can be developed and integrated into an ENT expert system. In the future, the ENT expert system can be operated by workers in community health centres/clinics to assist leading health them in diagnosing ENT diseases early.
Co-Authors Adi Sugita Pandey Afwani, Royana Agitha, Nadiyasari Ahmad Musnansyah Ahmad Zafrullah Mardiansyah Albar, Moh. Ali Aldian Wahyu Septiadi Andy Hidayat Jatmika Anita Rosana MZ Annisa Mujahidah Robbani Anugrah, Febrian Rizky Aprilla, Diah Mitha Aranta, Arik Ariessaputra, Suthami Arik Aranta Arik Aranta Ario Yudo Husodo Ario Yudo Husodo Ario Yudo Husodo Ario Yudo Husodo Ario Yudo Husodo Ario Yudo Husodo Ario Yudo Husodo, Ario Yudo Ariyan Zubaidi Ariyan Zubaidi Awaluddin Ayu Rezki Azizah Arif Paturrahman Belmiro Razak Setiawan Budi Irmawati Budi Irmawati Bulkis Kanata Chaerus Sulton Chandra Adiguna Chandra Adiguna Cipta Ramadhani Darmawan, Riski David Arizaldi Muhammad Dedi Ermansyah Dina Juliani U M, Eka Ditha Nurcahya Avianty Dwitama, Aditya Perwira Joan Dwiyansaputra, Ramaditia Eet Widarini Fa'rifah, Riska Yanu Fachry Abda El Rahman Fadilah . Fahmi Syuhada Faqih Hamami Farhan Yakub Bawazir Fiena Efliana Alfian Firdaus, Asno Azzawagaam Fitrah, Muhammad Dinul Fitri Bimantoro Gibran Satria Nugraha Gibran Satya Nugraha Gibran Satya Nugraha Gibran Satya Nugraha Gibran Satya Nugraha Gibran Satya Nugraha Gou Koutaki Gunawan Haidra Rahman Halil Akhyar Hamidi, Mohammad Zaenuddin Hendy Marcellino Heri Wijayanto Heri Wijayanto Heri Wijayanto Hidayat, Lalu Ramdoni I B K Widiartha I Gde Putu Wirarama Wedaswhara W. I Made Budii i Suksmadana I Made Subiantara Putra I Putu Teguh Putrawan I Wayan Agus Arimbawa I Wayan Agus Arimbawa I Wayan Agus Arimbawa, I Wayan Agus Ida Bagus Ketut Widiartha Ida Bagus Ketut Widiartha Ida Bagus Ketut Widiartha Ida Nyoman Tegeh Adnyana Imam Arief Putrajaya Jayusman, Dirga Kadriyan, Hamsu Kansha, Lyudza Aprilia Keeichi Uchimura Keiichi Uchimura Keiichi Uchimura L. A. Syamsul Irfan Lalu Sweta Arif Lalu Zulfikar Muslim Lidia Ardhia Wardani Made Agus Dwiputra Mayzar Anas Maz Isa Ansyori Mega Laely Moh Ali Albar Moh. Ali Albar Muhamad Nizam Azmi Muhamad Syamsu Iqbal Muhammad Daden Kasandi Putra Wesa Muhammad Husnul Ramdani Muhammad Khaidar Rahman Muhammad Mukaddam Alaydrus Muhammad Naufal Rizqullah Muhammad Syulhan Al Ghofany Mulyana, Heru Murpratiwi, Santi Ika Mustiari, Mustiari Ni Nyoman Citariani Sumartha Ni Nyoman Kencanawati Nisa, Aisyah Khairun Novian Maududi Novita Nurul Fakhriyah Nugraha, Gibran Satya Nurhalimah Nurhalimah Obenu, Juanri Priskila Pahrul Irfan Pahrul Irfan Pandu Deski Prasetyo Putra, Chairul Fatikhin Rahmatin, Baiq Anggita Arsya Ramaditia Dwiyansaputra Ramaditia Dwiyansaputra Ramaditia Dwiyansaputra Ramdhani, Ghina Kamilah Ramlah Nurlaeli Rani Farinda Reza Rismawandi Rina Lestari Riska Yulianti Ristirianto Adi Romi Saefudin Rosalina Rosalina Salsabila Putri Rajani Said Santi Ika Murpratiwi Saputra, Muhammad Harpan Teguh Satya Nugraha, Gibran Selvira Anandia Intan Maulidya Setiawan, Lalu Rudi Siti Faria Astari Sri Endang Anjarwani Sri Endang Anjarwani Sri Endang Arjarwani Suhada, Destia Suksmadana, I Made Budi Sulfan Akbar Syaifullah Syaifullah Topan Khrisnanda Tri Erna Suharningsih Ulandari, Alisyia Kornelia Wahyu Alfandi Widodo, Agung Mulyo Wirarama Wedashwara Wisnujati, Andika Yogi Permana Yudo Husodo, Ario Zafrullah, Ahmad Zakiyah Rahmiati Zubaidi, Ariyan Zuhraini, Marlia Zul Rijan Firmansyah