Claim Missing Document
Check
Articles

Found 36 Documents
Search

Klasifikasi Citra Satelit Menggunakan Kombinasi Fitur Warna Dan Fitur Tekstur ., Sutrisno; Supianto, Ahmad Afif
Jurnal Teknologi Informasi dan Ilmu Komputer Vol 2 No 2: Oktober 2015
Publisher : Fakultas Ilmu Komputer, Universitas Brawijaya

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (945.832 KB) | DOI: 10.25126/jtiik.201522141

Abstract

AbstrakPenelitian tentang klasifikasi citra satelit untuk mengklasifikasikan citra dalam kelompok tertentu sedang mengalami perkembangan. Terdapat masalah yang disebabkan oleh kesalahan yang dilakukan saat ekstraksi fitur. Pada penelitian ini, peneliti mengusulkan metode baru yang dapat digunakan untuk klasifikasi citra melalui ekstraksi fitur berupa fitur warna yang menggunakan tranformasi model warna YUV dan fitur tekstur menggunakan fungsi Gabor. Untuk klasifikasi, peneliti menggunakan Fuzzy Support Vector Machine dalam menghindari adanya daerah yang tidak dapat terklasifikasi pada metode SVM. Terdapat tiga kelas untuk klasifikasi, yaitu kelas pertanian, kelas pemukiman, dan kelas perairan. Pengujian dilakukan terhadap citra satelit dengan ukuran 256 x 256 piksel serta data latih sebanyak 450 data dengan ukuran 16 x 16 piksel. Hasil pengujian menunjukkan bahwa metode yang diusulkan peneliti dapat melakukan klasifikasi data citra dengan tingkat akurasi yang didapatkan melebihi 80%.Kata kunci: Citra Satelit, Transformasi Citra, Fungsi Gabor, Fuzzy Support Vector MachineAbstractResearch on the satellite image classification for grouping pixels in an image into a number of classes, so that each class can describe an entity with certain characteristics. Problems caused by errors in feature extraction or by image degradation can occur in the classification process. In this study, a new method is proposed for image classification by extracting features such as color features using a YUV color model transformation and texture features using Gabor functions. For the classification process, we use the Fuzzy Support Vector Machine to avoid unclassifiable regions in SVM method. There are three classes who used in this study, namely agricultural land, residential area, and water area. The test carried out on the satellite image size 256x256 pixels with a total number of 450 training data size 16x16 pixel image data. Tests carried out to classify images into 3 classes. Experimental results show that the proposed method is able to classify the data with an accuracy rate above 80%.Keywords: Satellite Imagery, Image Transformation, Gabor functions, Fuzzy Support Vector Machine
Registrasi Citra Dental Menggunakan Feature From Accelerated Segment Test dan Local Gabor Texture For Iterative Point Correspondence Supianto, Ahmad Afif; Setiawan, Budi Darma
Jurnal Teknologi Informasi dan Ilmu Komputer Vol 4 No 4: Desember 2017
Publisher : Fakultas Ilmu Komputer, Universitas Brawijaya

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (985.536 KB) | DOI: 10.25126/jtiik.201744503

Abstract

AbstrakRegistrasi citra di bidang periodontal telah dikembangkan untuk melakukan evaluasi terhadap tulang alveolar. Masalah yang disebabkan oleh kesalahan saat ekstraksi fitur atau oleh degradasi gambar bisa timbul pada proses pencocokan fitur. Selain itu, teknik registrasi citra yang didasarkan pada fitur seperti titik, identifikasi tepian (edges), kontur, atau fitur yang lain yang biasa digunakan untuk membandingkan gambar dan kemudian memetakannya merupakan teknik yang sangat sensitif terhadap keakuratan pada tahap ekstraksi fitur. Dari kedua argumen ini, maka diperlukan teknik ekstraksi fitur yang tangguh untuk mencegah terjadinya kesalahan pada proses pencocokan fitur sehingga mendapatkan hasil registrasi citra yang akurat. Pada penelitian ini, diusulkan metode baru untuk registrasi citra. Metode yang diusulkan menggunakan metode ekstraksi fitur yang efektif terhadap akurasi dan efisien terhadap waktu komputasi dengan menerapkan Learning Features, yaitu Feature from Accelerated Segment Test (FAST) sebagai metode ekstraksi fitur. Selain itu, akan dilakukan pengembangan terhadap proses pencocokan fitur dengan menerapkan Local Gabor Texture (LGT) pada algoritma Iterative Point Correspondence (IPC) untuk melakukan registrasi pada citra dental periapikal. Uji coba dilakukan terhadap 8 citra grayscale dental periapikal dan berhasil melakukan registrasi citra  pada citra dental periapikal dengan nilai akurasi rata-rata diatas 93% dengan jumlah iterasi minimal mulai dari 400 iterasi.Kata kunci: registrasi citra, learning feature, local gabor texture, iterative point correspondence, citra dental periapikalAbstractImage registration in the periodontal field has been developed to evaluate alveolar bones. Problems caused by errors during feature extraction or by image degradation can arise in feature matching process. In addition, image registration techniques that are based on features such as points, identification of edges, contours, or other features commonly used to compare images and map them are very sensitive techniques for accuracy at the feature extraction stage. From both of these arguments, a robust feature extraction technique is needed to prevent mistakes in the feature matching process to get image registration results accurately. In this study, a new method for image registration is proposed. The proposed method uses an effective feature extraction method for accuracy and efficient computing time by applying learning features, which is Feature from Accelerated Segment Test (FAST) as a feature extraction method. In addition, a feature-matching process will be developed by applying Local Gabor Texture (LGT) to the Iterative Point Correspondence (IPC) algorithm to register on the periapical dental images. The experiments were conducted on 8 grayscale dental periapical images and successfully registered the image in periapical dental image with an average accuracy more than 93% with a minimum iteration count starting from 400 iterations.Keywords: image registration, learning feature, local gabor texture, iterative point correspondence, dental periapical images
Clustering Credit Card Holder Berdasarkan Pembayaran Tagihan Menggunakan Improved K-Means dengan Particle Swarm Optimization Mar'i, Farhanna; Supianto, Ahmad Afif
Jurnal Teknologi Informasi dan Ilmu Komputer Vol 5 No 6: Desember 2018
Publisher : Fakultas Ilmu Komputer, Universitas Brawijaya

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (3093.112 KB) | DOI: 10.25126/jtiik.201856858

Abstract

AbstrakKartu kredit merupakan salah satu bentuk media bagi nasabah untuk melakukan kredit dalam sebuah proses transaksi yang telah disetujui oleh bank bersangkutan. Bank harus selektif dalam menganalisa nasabah yang ingin mengajukan penerbitan kartu kredit untuk menghindari adanya kredit macet yang dapat menimbulkan kerugian pada bank, sehingga sangat penting untuk mengetahui karakteristik nasabah dengan melakukan  clustering. Bank akan dapat mengambil keputusan untuk pertimbangan penerbitan kartu kredit dengan mencocokkan nasabah baru kedalam cluster-cluster yang telah dibentuk dan mengetahui kelayakan nasabah untuk diberikan akses kartu kredit dalam melakukan transaksi. K-Means adalah salah satu metode populer yang digunakan untuk clustering. Tetapi, metode K-Means tidak dapat memberikan solusi optimum karena keterbatasannya dalam penentuan titik centroid yang optimal, sehingga untuk memperbaiki metode K-Means dalam penelitian ini digunakan salah satu algoritma evolusi yaitu Particle Swarm Optimization (PSO) untuk generate titik centroid optimum yang digunakan dalam proses perhitungan K-Means. Hasil pengujian dilakukan dengan membandingkan nilai Silhouette Coefficient dari cluster yang dibentuk menggunakan K-Means murni dan Improved K-Means dengan PSO yang menghasilkan nilai masing–masing yaitu 0,3312 dan 0,3730. AbstractCredit card is one form of media for customers to credit in a transaction process that has been approved by the bank concerned. Banks should be selective in analyzing customers who want to apply for credit card issuance to avoid bad debts that can cause losses to banks, so it is very important to know the characteristics of customers by clustering. The Bank will be able to take decisions for credit card issuance by matching new customers into the established clusters and knowing the eligibility of customers to be granted credit card access in making transactions. K-Means is a popular method that is applied in the clustering process. However, the K-Means method can not provide the optimum solution because of its limitation in determining the optimal centroid point, so to improve the K-Means method in this research is used one of the evolution algorithm namely Particle Swarm Optimization (PSO) to generate optimum centroid point used in k-means calculation process. The test results were performed by comparing the coefficient silhouette values of the clusters formed using pure K-Means and Improved K-Means with PSO which yielded respective values of  0,31614 and 0,39484, respectively. 
Rancang Bangun Aplikasi Antrian Poliklinik Berbasis Mobile Zulfikar, Rizal Arif; Supianto, Ahmad Afif
Jurnal Teknologi Informasi dan Ilmu Komputer Vol 5 No 3: Juni 2018
Publisher : Fakultas Ilmu Komputer, Universitas Brawijaya

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (705.536 KB) | DOI: 10.25126/jtiik.201853891

Abstract

Antrian konvensional sudah menjadi polemik yang umum di masyarakat. Lamanya proses dan waktu tunggu antrian sangat mengganggu aktivitas sehari-hari. Pada instansi kesehatan seperti rumah sakit dan poliklinik, dimana pasien juga diharuskan mengantri, dapat berpengaruh pada kondisi pasien. Sistem pendaftaran online yang ada hanya menyediakan pengambilan nomor antrian, namun untuk proses menunggu antrian masih harus datang ke lokasi. Sistem yang ditawarkan memiliki kelebihan pada pilihan variasi jadwal poliklinik, dan pemberian informasi antrian yang sedang berjalan. Pada penelitian ini membahas tentang perancangan dan pengembangan sistem antrian poliklinik yang berbasis pada mobile phone, sehingga pengguna dapat mengakses sistem kapanpun dan dimanapun. Perancangan menggunakna metode MVC untuk memisahkan antara data dan tampilan serta cara pemrosesannya. Pengembangan aplikasi menggunakan hybrid mobile web framework yang dapat digunakan untuk pengembangan multiplatform. Pengujian sitem menggunakan White Box, Black Box, dan Usability Testing telah menunjukkan bahwa struktur dan hasil desain sistem dapat diimplementasikan dengan baik, sehingga sistem dapat berjalan sesuai kebutuhan.  AbstractThe conventional queue has become a common polemic in society. The length of processes and waiting time of the queue is very disturbing on daily activities. In health agencies such as hospitals and polyclinics, where patients are also required to queue up, may affect the patient's condition. Existing online registration system only provides queue number retrieval, but for the waiting process, the queue still has to come to the location. The offered system has advantages over the choice of polyclinic schedule variations, and the provision of queue information is running. This research discusses the design and development of a polyclinic queuing system based on a mobile phone so that users can access the system anytime and anywhere. The design uses the MVC method to separate data and display and how to process it. Application development using hybrid mobile web framework that can be used for multiplatform development. System validation method is using White Box, Black Box, and Usability Testing has shown that the structure and results of system design can be implemented well, so the system can run as needed. 
Implementasi Data Mining untuk Rekomendasi Pengambilan Mata Kuliah Pilihan Mahasiswa Sistem Informasi Iswara, I Putu Pradnyana; Supianto, Ahmad Afif
Jurnal Teknologi Informasi dan Ilmu Komputer Vol 6 No 3: Juni 2019
Publisher : Fakultas Ilmu Komputer, Universitas Brawijaya

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (3335.195 KB) | DOI: 10.25126/jtiik.201963892

Abstract

Pada penelitian ini kami mengimplementasikan algoritma klasifikasi untuk memberikan rekomendasi kepada mahasiswa keminatan apa yang lebih cocok diambil berdasarkan nilai-nilai mata kuliah prasyarat di semester-semester sebelumnya. Diharapkan dengan adanya rekomendasi ini semakin jelas pembatas antara disiplin ilmu yang ada pada Program Studi Sistem Informasi Universitas Brawijaya dimana terdapat 3 jenis jalur keminatan mata kuliah pilihan yaitu Database, Logika & pemrograman dan Manajemen SI/TI. Data set yang terdiri dari data training dan data testing merupakan data akademik dari mahasiswa angkatan 2015 yang sudah mengambil mata kuliah pilihan, data target dari penelitian ini adalah data akademik mahasiswa angkatan 2016. Algoritma klasifikasi yang digunakan adalah Rule Induction, CHAID, Random Forest, ID3,  dan Naive Bayes. Komposisi dari data training dan testing diubah-ubah untuk mengetahui pengaruh perubahan komposisi tersebut. Kelima algoritma tersebut diuji sebanyak 5 kali. Dari seluruh hasil pengujian didapatkan rata-rata akurasi dari kelima metode yang diusulkan berturut-turut adalah 66,48%, 67,49%, 80,62%, 86,90% dan 77,68%. Hasil tersebut menunjukkan bahwa algoritma dengan rata-rata akurasi tertinggi dimiliki oleh algoritma ID3 dikarenakan algoritmanya yang fleksibel dan dapat lebih akurat untuk menguji data yang digunakan.
Perbandingan Teknik Klasifikasi Dalam Data Mining Untuk Bank Direct Marketing Oktanisa, Irvi; Supianto, Ahmad Afif
Jurnal Teknologi Informasi dan Ilmu Komputer Vol 5 No 5: Oktober 2018
Publisher : Fakultas Ilmu Komputer, Universitas Brawijaya

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (115.712 KB) | DOI: 10.25126/jtiik.201855958

Abstract

Klasifikasi merupakan teknik dalam data mining untuk mengelompokkan data berdasarkan keterikatan data terhadap  data sampel. Pada penelitian ini, kami melakukan perbandingan 9 teknik klasifikasi untuk mengklasifikasi respon pelanggan pada dataset Bank Direct Marketing. Perbandingan teknik klasifikasi ini dilakukan untuk mengetahui model dalam teknik klasfikasi yang paling efektif untuk mengklasifikasi target pada dataset Bank Direct Marketing. Teknik klasifikasi yang digunakan yaitu Support Vector Machine, AdaBoost, Naïve Bayes, Constant, KNN, Tree, Random Forest, Stochastic Gradient Descent, dan CN2 Rule. Proses klasifikasi diawali dengan preprocessing data untuk melakukan penghilangan missing value dan pemilihan fitur pada dataset. Pada tahap evaluasi digunakan teknik 10 fold cross validation. Setelah dilakukan pengujian, didapatkan bahwa hasil klasifikasi menunjukkan akurasi terbaik diperoleh oleh model Tree, Constant, Naive Bayes, dan Stochastic Gardient Descent. Kemudian diikuti oleh model Random Forest, K-Nearest Neighbor, CN-2 Rule, AdaBoost dan Support Vector Machine. Dari keempat model yang menunjukkan hasil akurasi terbaik, untuk kasus ini Stochastic Gradient Descent terpilih sebagai model yang memiliki akurasi terbaik dengan nilai akurasi sebesar 0,972 dan hasil visualisasi yang dihasilkan lebih jelas untuk mengklasifikasi target pada dataset Bank Direct Marketing.AbstractClassification is a technique in data mining to classify data based on the attachment of data to the sample data.. In this paper, we present the comparison of  9 classification techniques performed to classify customer response on the dataset of Bank Direct Marketing. The techniques performed to find out the effectiveness model in the classification technique used to classify targets on the dataset of Bank Direct Marketing. The techniques used are Support Vector Machine, AdaBoost, Naïve Bayes, Constant, KNN, Tree, Random Forest, Stochastic Gradient Descent, and CN2 Rule. The classification process begins with preprocessing data to perform missing value omissions and feature selection on the dataset. Cross validation technique, with k value is 10, used in the evaluation stage. After testing, it was found that the classification results showed the best accuracy obtained when using the Tree model, Constant, Naive Bayes and Stochastic Gradient Descent. Afterwards the Random Forest model, K-Nearest Neighbor, CN-2 Rule, AdaBoost, and Support Vector Machine are followed. Of the four models with the high accuracy results, in this case Stochastic Gradient Descent was selected as the best accuracy model with an accuracy value of 0.972 and resulting visualization more clearly to classify targets on the dataset of Bank Direct Marketing.
Efisiensi Big Data Menggunakan Improved Nearest Neighbor Bawono, Aditya Hari; Supianto, Ahmad Afif
Jurnal Teknologi Informasi dan Ilmu Komputer Vol 6 No 6: Desember 2019
Publisher : Fakultas Ilmu Komputer, Universitas Brawijaya

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (2389.616 KB) | DOI: 10.25126/jtiik.2019662085

Abstract

Klasifikasi adalah salah satu metode penting dalam kajian data mining. Salah satu metode klasifikasi yang populer dan mendasar adalah k-nearest neighbor (kNN). Pada kNN, hubungan antar sampel diukur berdasarkan tingkat kesamaan yang direpresentasikan sebagai jarak. Pada kasus mayoritas terutama pada data berukuran besar, akan terdapat beberapa sampel yang memiliki jarak yang sama namun amat mungkin tidak terpilih menjadi tetangga, maka pemilihan parameter k akan sangat mempengaruhi hasil klasifikasi kNN. Selain itu, pengurutan pada kNN menjadi masalah komputasi ketika dilakukan pada data berukuran besar. Dalam usaha mengatasi klasifikasi data berukuran besar dibutuhkan metode yang lebih akurat dan efisien. Dependent Nearest Neighbor (dNN) sebagai metode yang diajukan dalam penelitian ini tidak menggunakan parameter k dan tidak ada proses pengurutan sampel. Hasil percobaan menunjukkan bahwa dNN dapat menghasilkan efisiensi waktu sebesar 3 kali lipat lebih cepat daripada kNN. Perbandingan akurasi dNN adalah 13% lebih baik daripada kNN.AbstractClassification is one of the important methods of data mining. One of the most popular and basic classification methods is k-nearest neighbor (kNN). In kNN, the relationships between samples are measured by the degree of similarity represented as distance. In major cases, especially on big data, there will be some samples that have the same distance but may not be selected as neighbors, then the selection of k parameters will greatly affect the results of kNN classification. Sorting phase of kNN becomes a computation problem when it is done on big data. In the effort to overcome the classification of big data a more accurate and efficient method is required. Dependent Nearest Neighbor (dNN) as method proposed in this study did not use the k parameters and no sample at the sorting phase. The proposed method resulted in 3 times faster than kNN. The accuracy of the proposed method is13% better results than kNN. 
Implementasi Kombinasi Algoritme Self-Organizing Map dan Fuzzy C-Means untuk Pengelompokan Performa Belajar Siswa pada Media Pembelajaran Digital Luckyana, Nabila Divanadia; Supianto, Ahmad Afif; Tibyani, Tibyani
Jurnal Teknologi Informasi dan Ilmu Komputer Vol 8 No 3: Juni 2021
Publisher : Fakultas Ilmu Komputer, Universitas Brawijaya

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.25126/jtiik.2021834402

Abstract

Media pembelajaran digital mampu menyimpan data dalam bentuk log data yang dapat digunakan untuk melihat perbedaan performa siswa yang tentu saja berbeda-beda antara satu siswa dengan siswa yang lainnya. Perbedaan performa siswa tersebut menyebabkan dibutuhkannya sebuah tahapan yang berfungsi untuk mempermudah proses evaluasi dengan cara menempatkan siswa kedalam kelompok yang sesuai agar dapat membantu tenaga pengajar dalam menangani serta memberikan umpan balik yang tepat pada siswanya. Penelitian ini bertujuan memanfaatkan log data dari sebuah media pembelajaran digital dengan menggunakan kombinasi dari algoritme Self-Organizing Map dan Fuzzy C-Means untuk mengelompokan siswa berdasarkan aktivitas mereka selama belajar dengan media tersebut. Data akan melalui sebuah proses reduksi dimensi dengan menggunakan algoritme SOM, lalu dikelompokkan dengan menggunakan algoritme FCM. Selanjutnya, data dievaluasi dengan menggunakan nilai silhouette coefficient dan dibandingkan dengan algoritme SOM clustering konvensional. Berdasarkan hasil implementasi yang telah dilakukan menggunakan 12 data assignment pada media pembelajaran Monsakun, dihasilkan parameter-parameter optimal seperti ukuran map atau jumlah output neuron sejumlah 25x25 dengan nilai learning rate yang berbeda-beda disetiap assignment. Selain itu, diperoleh pula 2 kelompok siswa pada setiap assignment berdasarkan nilai silhouette coefficient tertinggi yang mencapai lebih dari 0.8 di beberapa assignment. Melalui serangkaian pengujian yang telah dilakukan, penerapan kombinasi algoritme SOM dan FCM secara signifikan menghasilkan cluster yang lebih baik dibandingkan dengan algoritme SOM clustering konvensional. Abstract Digital learning media is able to store data in the form of log data that can be used to see differences in student performance. The difference in student performance causes the need for a stage that functions to simplify the evaluation process by placing students into appropriate groups in order to assist the teaching staff in handling and providing appropriate feedback to students. This study aims to utilize log data from a digital learning media using a combination of the Self-Organizing Map algorithm and Fuzzy C-Means to classify students based on their activities while learning with these media. The data will go through a dimensional reduction process using the SOM algorithm, then grouped using the FCM algorithm. Furthermore, the data were evaluated using the silhouette coefficient value and compared with the conventional SOM clustering algorithm. Based on the results of the implementation that has been carried out using 12 data assignments on the Monsakun learning media, optimal parameters such as map size or the number of neuron outputs are 25x25 with different learning rate values in each assignment. In addition, 2 groups of students were obtained for each assignment based on the highest silhouette coefficient score which reached more than 0.8 in several assignments. Through a series of tests that have been carried out, the implementation of a combination of the SOM and FCM algorithms has significantly better clusters than the conventional SOM clustering algorithm.
Prediksi Bidang Penelitian dan Rekomendasi Dosen Pembimbing Skripsi Berdasarkan Konten Latar Belakang pada Naskah Proposal Menggunakan Metode Multi-Class Support Vector Machine dan Weighted Product Pradana, Yustinus Radityo; Supianto, Ahmad Afif; Mursityo, Yusi Tyroni
Jurnal Teknologi Informasi dan Ilmu Komputer Vol 8 No 2: April 2021
Publisher : Fakultas Ilmu Komputer, Universitas Brawijaya

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.25126/jtiik.2021824511

Abstract

Pada Fakultas Ilmu Komputer Universitas Brawijaya (FILKOM UB), pengerjaan skripsi dimulai dengan melakukan pembuatan praproposal yang berisi latar belakang dan bidang skripsi. Dalam pengerjaan skripsi, mahasiswa butuh pendampingan oleh dosen pembimbing. Dosen pembimbing berfungsi sebagai motivator, pendamping serta pemberi arahan bagi mahasiswa yang sedang mengerjakan skripsi. Dosen pembimbing menjadi krusial dalam pengerjaan skripsi seorang mahasiswa. Oleh karena hal tersebut, pemilihan dosen pembimbing yang memiliki bidang keahlian yang sesuai dengan topik skripsi sangat penting. Pada FILKOM UB, dosen dengan bidang keahlian yang serupa dikumpulkan dalam sebuah kelompok jabatan fungsional dosen (KJFD). Mahasiswa FILKOM UB dapat berdiskusi dengan ketua program studi atau koordinator KJFD untuk mendapatkan rekomendasi dosen yang memiliki bidang keahlian sesuai topik skripsi. Topik skripsi dapat ditentukan dari latar belakang sebuah proposal skripsi. Penelitian ini bertujuan untuk mengetahui tingkat akurasi prediksi KJFD menggunakan algoritme Multi-class Support Vector Machine dan tingkat akurasi rekomendasi dosen pembimbing menggunakan algoritme Weighted Product. Prediksi KJFD dilakukan berdasarkan latar belakang pada naskah skripsi. Rekomendasi dosen diberikan berdasarkan kesesuaian bidang KJFD dosen dengan topik dan beberapa data dosen yang didapatkan dari unit Pengelola Sistem Informasi, Infrastruktur TI dan Kehumasan Fakultas Ilmu Komputer (PSIK FILKOM) seperti  jurusan dosen, sisa kuota bimbingan, tingkatan gelar, dan beban kerja. Hasil pengujian menghasilkan akurasi prediksi bidang skripsi memiliki nilai precision tertinggi sebesar 0,93 dan akurasi rekomendasi dosen pembimbing memiliki nilai precision@k tertinggi sebesar 0,1678 saat nilai k berjumlah 4. Hasil pengujian akurasi tersebut menampilkan bahwa prediksi bidang skripsi dapat dilakukan dengan sangat baik menggunakan Multi-class Support Vector Machine. Sementara rekomendasi dosen pembimbing dapat dilakukan secara optimal dengan jumlah dosen yang direkomendasikan sebanyak 4 dosen.AbstractIn Fakultas Ilmu Komputer Universitas Brawijaya (FILKOM UB), thesis work started by making preproposal which contains the background and thesis  field/topic. In the working of thesis, undergraduate student needs to be accompanied by a supervisor. Supervisor serve as motivator, companion, and guider for undergraduate students who are doing their thesis research. Supervisor roles become crucial in the working of thesis. Therefore, the selection of supervisor who have areas of expertise that matching with thesis topic is very important. In FILKOM UB, supervisor with similar expertise gathered in a lecturer functional group (KJFD). Students of FILKOM UB may discuss with the head of programme or KJFD coordinator to get a supervisor reccomendation who suitable with the topic of thesis. The topic of thesis can be determined by the introduction contents in  proposal manuscript. This research aims to discover the accuracy of KJFD prediction using Multi-class Support Vector Machine and the accuracy of supervisor reccomendation using Weighted Product. KJFD prediction formulated based on introduction contents in proposal manuscript. Supervisor recommendation done based on the coherency of supervisor’s expertise with the thesis’s topic and also based on some supervisor data that was obtained from unit Pengelola Sistem Informasi, Infrastruktur TI dan Kehumasan Fakultas Ilmu Komputer (PSIK FILKOM). The data that was obtained from unit PSIK FILKOM are supervisor’s majors, remaining quota for supervising, degree level, and work load. Testing result shows the accuracy of thesis’s topic having precision value of 0,93 and accuracy of the supervisor predicition having precision@k value of 0,1678 with k value of 4. The accuracy test result shows that thesis topics prediction can be done very well using Multi-class Support Vector Machine. While supervisor reccomendation can be done optimally when the number of recommended supervisor is 4.
Rancang Bangun Aplikasi Mathgeo sebagai Media Pembelajaran Dimensi Tiga Berbasis Mobile Sufiana, Santi Yunika; Supianto, Ahmad Afif; Brata, Komang Candra
Jurnal Teknologi Informasi dan Ilmu Komputer Vol 9 No 5: Oktober 2022
Publisher : Fakultas Ilmu Komputer, Universitas Brawijaya

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.25126/jtiik.2021864636

Abstract

Dimensi tiga terdiri atas elemen panjang, lebar dan tinggi yang digunakan untuk menggambarkan bentuk bangun ruang. Namun, kesulitan dalam mendeskripsikan bentuk dapat menjadi kendala bagi siswa dalam memahami materi dimensi tiga. Hal ini disebabkan kemampuan visualisasi siswa yang kurang. Apalagi belum diimbangi dengan pemanfaatan teknologi sebagai media pembelajaran. Dalam mengatasi masalah tersebut diperlukan media pembelajaran digital untuk meningkatkan minat belajar dan pemahaman siswa terhadap materi dimensi tiga. Menggunakan aplikasi ini, pengguna dapat membaca materi, mengerjakan latihan, mengerjakan kuis, dan mengukur pemahaman materi secara mandiri. Aplikasi ini dibangun menggunakan Android Studio dengan metode pengembangan perangkat lunak Waterfall. Pengembangan dimulai dari analisis kebutuhan, perancangan, implementasi dan pengujian. Kebutuhan fungsional diuji menggunakan black-box testing, sedangkan kebutuhan non-fungsional diuji menggunakan compatibility testing dan usability testing. Black-Box Testing menghasilkan validitas 100%. Compatibility testing dilakukan menggunakan fitur Test Lab Firebase, menghasilkan 6 versi android dapat menjalankan aplikasi dengan baik pada versi minimum 7.0 (Nougat) dan versi maksimum 10 (Android Q). Usability testing dilakukan menggunakan metode System Usability Scale (SUS), diperoleh nilai SUS sebesar 87.5. Interpretasi yang diperoleh adalah Grade A+ dengan adjective Best Imagineable dan termasuk dalam kategori dapat diterima. AbstractThe third dimension consists of length, width and height which are used to describe three-dimensional shapes. However, difficulties in describing three-dimensional shapes can be an obstacle for students in understanding three-dimensional material. This is due to the student’s lack of visualization skills. Moreover, it has not been matched by the use of technology as a learning medium. In overcoming this problem, digital learning media is needed to increase student interest in learning and understanding of three-dimensional material. Using this application, users can read the material, do exercises, take quizzes, and measure understanding of the material independently. This application was built using Android Studio with the Waterfall software development life cycle. Development starts from requirement analysis, design, implementation and testing. Functional requirements are tested using black-box testing, while non-functional requirements are tested using compatibility testing and usability testing. Black-Box Testing yields 100% validity. Compatibility testing is carried out using the Firebase Test Lab feature, resulting in 6 android versions running the application well on a minimum version 7.0 (Nougat) and a maximum version 10 (Android Q). Usability testing was performed using the System Usability Scale (SUS) method, and the SUS value was 87.5. The interpretation obtained is Grade A + with the Adjective Best Imagineable and is included in the acceptable category.