p-Index From 2020 - 2025
11.341
P-Index
This Author published in this journals
All Journal Bulletin of Electrical Engineering and Informatics Nuansa Informatika Jurnal Informatika dan Teknik Elektro Terapan Sistemasi: Jurnal Sistem Informasi JOIV : International Journal on Informatics Visualization Sinkron : Jurnal dan Penelitian Teknik Informatika Jurnal Ilmiah Universitas Batanghari Jambi JURNAL MEDIA INFORMATIKA BUDIDARMA CogITo Smart Journal Jurnal Informatika Universitas Pamulang JITTER (Jurnal Ilmiah Teknologi Informasi Terapan) ILKOM Jurnal Ilmiah JurTI (JURNAL TEKNOLOGI INFORMASI) Jurnal Teknologi Terpadu EDUMATIC: Jurnal Pendidikan Informatika Building of Informatics, Technology and Science Jutisi: Jurnal Ilmiah Teknik Informatika dan Sistem Informasi Technologia: Jurnal Ilmiah Aisyah Journal of Informatics and Electrical Engineering Indonesian Journal of Business Intelligence (IJUBI) bit-Tech Aviation Electronics, Information Technology, Telecommunications, Electricals, Controls (AVITEC) Respati Jurnal Abdi Insani Journal of Computer System and Informatics (JoSYC) Jurnal Graha Pengabdian Infotek : Jurnal Informatika dan Teknologi jurnal syntax admiration TEPIAN Jurnal Teknologi Informatika dan Komputer Jurnal Teknik Informatika (JUTIF) Jurnal Teknimedia: Teknologi Informasi dan Multimedia JNANALOKA SENADA : Semangat Nasional Dalam MengabdI Journal of Electrical Engineering and Computer (JEECOM) Jurnal FASILKOM (teknologi inFormASi dan ILmu KOMputer) Jurnal Informatika dan Teknologi Komputer ( J-ICOM) Jurnal Sisfotek Global Jurnal Informatika Teknologi dan Sains (Jinteks) Malcom: Indonesian Journal of Machine Learning and Computer Science Cerdika: Jurnal Ilmiah Indonesia SENADA : Semangat Nasional Dalam Mengabdi Intechno Journal : Information Technology Journal The Indonesian Journal of Computer Science SITEKNIK: Sistem Informasi, Teknik dan Teknologi Terapan Jurnal Teknik AMATA Jurnal TAM (Technology Acceptance Model)
Claim Missing Document
Check
Articles

Found 6 Documents
Search
Journal : Jurnal Teknik Informatika (JUTIF)

SMARTPHONE RECOMMENDATION SYSTEM USING MODEL-BASED COLLABORATIVE FILTERING METHOD Fajar Aji Prayoga; Kusnawi Kusnawi
Jurnal Teknik Informatika (Jutif) Vol. 3 No. 6 (2022): JUTIF Volume 3, Number 6, December 2022
Publisher : Informatika, Universitas Jenderal Soedirman

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.20884/1.jutif.2022.3.6.413

Abstract

Smartphone are now an importan item that is needed by many people. The rapid development of technology make smartphone companies are competing to release their best smartphones.The many smartphones in online shop cause user to become disoriented about their choice. A recommendation system can help the user in choosing the smartphone that the user likes. In this study, a recommendation system was made using the collaborative filtering method with the K-Nearest Neighbors algorithm and combined with the application of K-Means algorithm to divide the smartphone into several group. The output of collaborative filtering method is that the model can give smartphone rating predictions to user. The prediction results will be used as the basis for giving recommendations to user. The purpose of smartphones groupping is so that the recommendation results are more specific and accurate. The evaluation of the model gets an MAE value is 1.1047 and RMSE value is 1.7579. So it can be concluded that the development of a smartphone recommendation system was successfully implemented.
Integration of BERT-VAD, MFCC-Delta, and VGG16 in Transformer-Based Fusion Architecture for Multimodal Emotion Classification Nayoma, Fisan Syafa; Kusnawi, Kusnawi
Jurnal Teknik Informatika (Jutif) Vol. 6 No. 4 (2025): JUTIF Volume 6, Number 4, Agustus 2025
Publisher : Informatika, Universitas Jenderal Soedirman

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.52436/1.jutif.2025.6.4.4915

Abstract

Emotion is a condition that plays an important role in human interaction and is the main focus of intelligence research in utilizing multimodal. Previous studies have classified multimodal emotions but are still less than optimal because they do not consider the complexity of human emotions as a whole. Although using multimodal data, the selection of feature extraction and the merging process are still less relevant to improving accuracy. This study attempts to categorize emotions and improve precision through a multimodal methodology that utilizes Transformer-based Fusion. The data used consists of a synthesis of three modalities: text (extracted through BERT and assessed through the affective dimensions of NRC Valence, Arousal, and Dominance), audio (extracted through MFCC and delta-delta2 from the RAVDESS and TESS datasets), and images (extracted through VGG16 on the FER-2013 dataset). The model is built by mapping each feature into an identical dimensional representation and processed through a Transformer block to simulate the interaction between modalities, known as feature-level interactions. The classification procedure is run through a dense layer with softmax activation. Model evaluation was performed using Stratified K-Fold Cross Validation with k=10. The evaluation results showed that the model achieved 95% accuracy in the ninth fold. This result shows a significant improvement from previous research at the feature level (73.55%), and underlines the effectiveness of the combination of feature extraction and Transformer-based Fusion. This study contributes to the field of emotion-aware systems in informatics, facilitating more adaptive, empathetic, and intelligent interactions between humans and computers in practical applications.
Evaluating Classification Models for Predicting Product Success in Indonesian E-Commerce Aulya, Fiola Utri; Kusnawi, Kusnawi
Jurnal Teknik Informatika (Jutif) Vol. 6 No. 4 (2025): JUTIF Volume 6, Number 4, Agustus 2025
Publisher : Informatika, Universitas Jenderal Soedirman

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.52436/1.jutif.2025.6.4.5071

Abstract

The intense competition within the Indonesian e-commerce landscape presents a significant challenge for sellers in forecasting product performance. This study offers a unique contribution by systematically comparing seven machine learning classification algorithms to predict product success across Indonesia's three largest platforms: Shopee, Tokopedia, and Lazada. The primary objective is to identify the most effective algorithm for predicting whether a product's sales will surpass the market median. The methodology involved aggregating and preprocessing a dataset of 3,673 product listings. Product success was defined as a binary variable based on sales volume exceeding the dataset's median. Seven models, including Logistic Regression, KNN, SVM, and tree-based ensembles like Random Forest, XGBoost, and LightGBM, were trained and optimized using a 5-fold cross-validated GridSearchCV. Evaluation was based on accuracy, ROC AUC, and F1-score. The results demonstrate a clear performance hierarchy, with tree-based ensemble models achieving superior results. Random Forest emerged as the premier model, attaining an accuracy of 83.2% and an AUC of 0.907. A subsequent feature importance analysis revealed that shop_followers and price were the most significant predictors of success. This finding has crucial practical implications, particularly for Micro, Small, and Medium Enterprises (MSMEs), by providing a data-driven framework for decision-making. The model enables them to focus resources on actionable strategies—building seller reputation and optimizing pricing—to enhance their competitiveness effectively.
PCOS DISEASE CLASSIFICATION USING FEATURE SELECTION RFECV AND EDA WITH KNN ALGORITHM METHOD Pitaloka, Nadhira Triadha; Kusnawi, Kusnawi
Jurnal Teknik Informatika (Jutif) Vol. 4 No. 4 (2023): JUTIF Volume 4, Number 4, August 2023
Publisher : Informatika, Universitas Jenderal Soedirman

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.52436/1.jutif.2023.4.4.831

Abstract

Polycystic ovary syndrome is an endocrine disorder of the ovaries that causes hormonal disturbances in women of reproductive age, where androgen secretion in the ovaries of women with Polycystic Ovary Syndrome (PCOS) is excessive compared to normal women. This usually occur in women with obesity which is characterized by irregular menstrual cycles, chronic anovulation, hyperandrogenism, and even infertility. Efforts are used to treat this disease in the form of hormone therapy, laparoscopic ovarian drilling, and in-vitro fertilization. However, these three therapies are focused on symptomatic therapy and are less effective in treating PCOS-related infertility. Detecting PCOS disease early is very necessary so that prevention and treatment can be carried out immediately. Therefore, a classification is carried out to detect PCOS disease by being able to analyze data that has a high degree of accuracy. The method used for the classification of PCOS disease is using the K Nearest Neighbor (KNN), method which previously carried out the feature selection process, namely the Exploratory Data Analysis (EDA), method which is used for the data analysis process by means of an analysis approach to data to find out the most accurate method and using the Recursive Feature Elimination and Cross-Validation (RFECV) selection method which ranks the features based on their level of importance to the prediction process. Further, the data classification process uses the K-Nearest Neighbors (KNN) algorithm. The results of the Exploratory Data Analysis (EDA) feature selection process produce 10 data attributes that are used and are continued by the Recursive Feature Elimination and Cross-Validation (RFECV) process by producing the 7 most important attributes used and finally the K-Nearest Neighbors (KNN) method has a high level high accuracy by producing an accuracy value of 93%, precision 82%, recall 100%, and F1 score 90%.
COMPARISON OF LEAST SQUARE AND QUADRATIC METHODS ON PREDICTION THE NUMBER OF NEW STUDENT APPLICANTS Atin Hasanah; Kusrini, Kusrini; Kusnawi, Kusnawi
Jurnal Teknik Informatika (Jutif) Vol. 4 No. 6 (2023): JUTIF Volume 4, Number 6, Desember 2023
Publisher : Informatika, Universitas Jenderal Soedirman

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.52436/1.jutif.2023.4.6.1124

Abstract

New student registration is held every year with several mechanisms. However, in recent years the number of applicants has decreased even though it had experienced a surge in the previous year. So that, it is necessary to have a prediction to predict the number of applicants in the coming year. In addition, the results of these predictions can be used as material for consideration in determining the quota/ceiling for the number of new student admissions in the following academic year. This research used the Least Square and Quadratic methods to predict the number of new student applicants based on data on the number of applicants from the 2014/2015 to 2022/2023 academic years. Performance testing of the two methods was tested with three (3) testing methods : MAE, MAPE, and MSE. The performance test found that the Quadratic method is more suitable with the MAPE value in the "Good" forecasting accuracy category, which is 11%. For the MAE value, it gets 452,17 and an MSE of 302069,04. While Least Square produces a MAPE value in the "Enough" forecasting accuracy category of 30%, for the MAE value, it gets 996,97 and an MSE of 1494205,36.
Comparison ff Sentiment Labeling Using Textblob, Vader, and Flair in Public Opinion Analysis Post-2024 Presidential Inauguration with IndoBERT Kusnawi, Kusnawi; Anam, Khoerul
Jurnal Teknik Informatika (Jutif) Vol. 6 No. 2 (2025): JUTIF Volume 6, Number 2, April 2025
Publisher : Informatika, Universitas Jenderal Soedirman

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.52436/1.jutif.2025.6.2.4015

Abstract

The results of the 2024 Indonesian presidential election decided that Prabowo Subianto and Gibran Rakabuming Raka became the elected pair of Indonesian presidential and vice-presidential candidates in 2024. The pair's election triggered various public reactions, especially on social media platforms. Some social media platforms provided diverse opinions, indicating a wide variety of views on this issue. This research aims to analyze public opinion after the election of the 2024 Indonesian president by comparing sentiment using TextBlob, VADER (Valence Aware Dictionary and sEntiment Reasoner), and Flair. Training and testing are done with the IndoBERT model to determine the most effective sentiment labeling. This research starts by collecting text data from social media X, YouTube, and Instagram, then preprocessing, translating, and labeling data using three libraries, training, and testing using IndoBERT. The results of training and testing data show that Flair has an accuracy of 81.29%, TextBlob has an accuracy of 73.35%, and VADER has an accuracy of 74.86%. From the accuracy results obtained, it can be concluded that labeling using Flair provides the greatest accuracy of the others because the Flair labeling process uses deep learning and contextual embedding techniques.
Co-Authors Abdulloh, Ferian Fauzi Afrig Aminuddin Agung Susanto Agung Susanto Ahmad Fauzi Ahmad Yusuf Ainnur Rafli Ainul Yaqin Ali Mustopa, Ali Alva Hendi Muhammad Andi Sunyoto Anggit Dwi Hartanto, Anggit Dwi Antara, Pebri Ardiansyah, Fachri Arief Setyanto Arifuddin, Danang Arnila Sandi Aryawijaya Asadulloh, Bima Pramudya Assani, Moh. Yushi Atin Hasanah Atin Hasanah Atmoko, Alfriadi Dwi Aulya, Fiola Utri BAYU SATRIYA, RIYAN Bhahari, Rifqi Hilal Candra Rusmana Cynthia Widodo Dede - Sandi Dede Husen Dede Sandi Dewi Kartika Dimaz Arno Prasetio Elsa Virantika Ema Utami Erna Utami Fajar Abdillah, Moh Fajar Aji Prayoga Haris, Ruby Hartatik Haryo, Wasis Hasirun Hasirun Hendrik Hendrik Henri Kurniawan Hidayatunnisa'i Huda, Luthfi Nurul Indra Irawanto Irawanto, Indra Joang Ipmawati Kanoena, Melcior Paitin Karisma Septa Kresna Khairullah, Irfan Khalil Khoerul Anam, Khoerul Khoirunnita, Aulia Khrisna Irham Fadhil Pratama Kusirini Kusrini Kusrini KUSRINI Kusrini Kusrini - - Kusrini Kusrini Kusrini Kusrini Kusrini Kusrini Kusrini Kusrini Kusrini Kusrini Kusrini, Kusrini M Andika Fadhil Eka Putra M. Nurul Wathani Maehendrayuga, Arief Majid Rahardi Maringka, Raissa Mashuri, Ahmad Sanusi Muh. Syarif Hidayatullah Muhammad Firdaus Abdi Muhammad Firdaus Abdi Muhammad Irvan Shandika Muhammad Reza Riansyah Nayoma, Fisan Syafa Neni Firda Wardani Tan Ngaeni, Nurus Sarifatul Nurul Zalza Bilal Jannah Omar Muhammad Altoumi Alsyaibani Pattimura, Yudha Bagas Pebri Antara Pitaloka, Nadhira Triadha Pramono, Aldi Yogie Prastyo, Rahmat Prema Adhitya Dharma Kusumah Puji Prabowo, Dwi Qurniaty, Charlen Alta Raffa Nur Listiawan Dhito Eka Santoso Rahayu, Christa Putri RAMADHAN, SYAIFUL Rifda Faticha Alfa Aziza Rita Wati Ritham Tuntun Rizal Khadarusman Rodney Maringka Rohim, Ni’matur saifulloh Saifulloh, saifulloh Salman Alfaris Salman Alfaris, Salman San Sudirman Sekarsih, Fitria Nuraini Sentoso, Thedjo Sepriadi - Bumbungan Sepriadi Bumbungan Sri Yanto Qodarbaskoro Sry Faslia Hamka Sudirman, San Suyatmi Suyatmi Suyatmi Suyatmi Syaiful Huda Syaiful Ramadhan Tamuntuan, Virginia Taryoko, Taryoko Teguh Arlovin triadin, Yusrinnatul Jinana Van Daarten Pandiangan Wahyu Pujiharto, Eka Wangsa, Sabda Sastra Widodo, Cynthia Widyanto, Agung Wirawan, Tegar Yusa, Aldo Yuza, Adela Zaenul Amri