p-Index From 2020 - 2025
10.809
P-Index
This Author published in this journals
All Journal Bulletin of Electrical Engineering and Informatics Nuansa Informatika Jurnal Informatika dan Teknik Elektro Terapan Sistemasi: Jurnal Sistem Informasi JOIV : International Journal on Informatics Visualization Sinkron : Jurnal dan Penelitian Teknik Informatika Jurnal Ilmiah Universitas Batanghari Jambi JURNAL MEDIA INFORMATIKA BUDIDARMA CogITo Smart Journal Jurnal Informatika Universitas Pamulang JITTER (Jurnal Ilmiah Teknologi Informasi Terapan) ILKOM Jurnal Ilmiah JurTI (JURNAL TEKNOLOGI INFORMASI) Jurnal Teknologi Terpadu EDUMATIC: Jurnal Pendidikan Informatika Building of Informatics, Technology and Science Jutisi: Jurnal Ilmiah Teknik Informatika dan Sistem Informasi Technologia: Jurnal Ilmiah Aisyah Journal of Informatics and Electrical Engineering Indonesian Journal of Business Intelligence (IJUBI) bit-Tech Aviation Electronics, Information Technology, Telecommunications, Electricals, Controls (AVITEC) Respati Jurnal Abdi Insani Journal of Computer System and Informatics (JoSYC) Jurnal Graha Pengabdian Infotek : Jurnal Informatika dan Teknologi jurnal syntax admiration TEPIAN Jurnal Teknologi Informatika dan Komputer Jurnal Teknik Informatika (JUTIF) Jurnal Teknimedia: Teknologi Informasi dan Multimedia JNANALOKA SENADA : Semangat Nasional Dalam MengabdI Journal of Electrical Engineering and Computer (JEECOM) Jurnal FASILKOM (teknologi inFormASi dan ILmu KOMputer) Jurnal Informatika dan Teknologi Komputer ( J-ICOM) Jurnal Sisfotek Global Jurnal Informatika Teknologi dan Sains (Jinteks) Malcom: Indonesian Journal of Machine Learning and Computer Science Cerdika: Jurnal Ilmiah Indonesia SENADA : Semangat Nasional Dalam Mengabdi Intechno Journal : Information Technology Journal The Indonesian Journal of Computer Science SITEKNIK: Sistem Informasi, Teknik dan Teknologi Terapan Jurnal Teknik AMATA Jurnal TAM (Technology Acceptance Model)
Claim Missing Document
Check
Articles

Found 2 Documents
Search
Journal : bit-Tech

Penerapan Metode Moving Average untuk Memprediksi Stok Parfum Rizal Khadarusman; Kusrini; Kusnawi
bit-Tech Vol. 7 No. 1 (2024): bit-Tech
Publisher : Komunitas Dosen Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.32877/bt.v7i1.1563

Abstract

Kekurangan stok parfum karena mengalami kesulitan dalam memprediksi kebutuhan stok untuk bulan berikutnya adalah hal yang tidak boleh terjadi. Proses pengadaan stok yang memerlukan waktu menambah tantangan ini, mengakibatkan dampak negatif pada omzet penjualan toko. Penelitian ini bertujuan untuk mengatasi masalah tersebut dengan menerapkan metode data mining, khususnya teknik peramalan, untuk memprediksi kebutuhan stok parfum. Moving average dipilih karena kesederhanaan dan efektivitasnya dalam menangani data yang bersifat time-series. Metode ini menghitung rata-rata penjualan dalam periode waktu tertentu untuk memberikan estimasi kebutuhan stok di masa depan. Dengan pendekatan ini, kami dapat mengurangi dampak variabilitas data harian yang mungkin disebabkan oleh faktor musiman atau peristiwa tertentu, dan fokus pada tren yang lebih stabil. Dataset yang dianalisis mencakup data penjualan toko parfum dari Maret 2022 hingga September 2022, dan tiga parameter berbeda diuji dalam penelitian ini: periode 2 bulan, 3 bulan, dan 4 bulan. Hasil penelitian menunjukkan bahwa parameter 2 bulan memberikan prediksi paling akurat, dengan nilai error Mean Absolute Percentage Error (MAPE) sebesar 13,3%, menunjukkan tingkat akurasi yang baik. Kesimpulan dari penelitian ini adalah bahwa metode moving average dengan parameter 2 bulan efektif untuk memprediksi kebutuhan stok parfum, yang dapat membantu toko dalam mengelola persediaan dengan lebih efisien dan mengurangi risiko kekurangan stok. Temuan ini menunjukkan perlunya perencanaan persediaan yang lebih baik dan penggunaan metode prediksi yang tepat dalam industri parfum. Penelitian lebih lanjut mungkin diperlukan untuk mengoptimalkan pendekatan ini atau mengeksplorasi metode alternatif.
Analisa Prediksi Turnover Karyawan menggunakan Machine Learning Maehendrayuga, Arief; Setyanto, Arief; Kusnawi
bit-Tech Vol. 7 No. 2 (2024): bit-Tech
Publisher : Komunitas Dosen Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.32877/bt.v7i2.1999

Abstract

Penelitian ini membahas penerapan machine learning untuk memprediksi turnover karyawan, yang merupakan tantangan utama dalam manajemen Sumber Daya Manusia (SDM). Turnover karyawan sering kali disebabkan oleh berbagai faktor, termasuk ketidakseimbangan kehidupan kerja, ketidakpuasan kerja, dan minimnya peluang pengembangan karier. Dalam penelitian ini, digunakan dataset IBM HR Analytics untuk menganalisis faktor-faktor yang memengaruhi turnover karyawan. Algoritma yang diterapkan meliputi Support Vector Machine (SVM) dan Random Forest. Proses penelitian dimulai dengan pengumpulan data, eksplorasi awal, praproses data, seleksi fitur, dan penyeimbangan data menggunakan teknik Synthetic Minority Over-sampling Technique (SMOTE). Evaluasi kinerja model dilakukan menggunakan confusion matrix untuk mengukur akurasi, presisi, recall, dan f1-score. Hasil analisis menunjukkan bahwa algoritma Random Forest memberikan kinerja yang lebih baik dibandingkan SVM. Random Forest mencapai akurasi 97,72%, sedangkan SVM memperoleh akurasi 92,51%. Setelah menerapkan SMOTE, akurasi meningkat menjadi 97% untuk Random Forest dan 93% untuk SVM. Selain akurasi, Random Forest juga unggul dalam metrik presisi, recall, dan f1-score, membuktikan keandalannya dalam memprediksi turnover karyawan. Temuan ini menegaskan bahwa pendekatan machine learning dapat digunakan untuk memahami pola turnover secara lebih mendalam. Dengan prediksi yang lebih akurat, perusahaan dapat merancang strategi retensi karyawan yang lebih efektif dan berbasis data, menciptakan lingkungan kerja yang mendukung produktivitas serta meningkatkan stabilitas tenaga kerja secara keseluruhan.
Co-Authors Abdulloh, Ferian Fauzi Afrig Aminuddin Agung Susanto Agung Susanto Ahmad Fauzi Ahmad Sanusi Mashuri Ahmad Yusuf Ainnur Rafli Ainul Yaqin Ali Mustopa, Ali Alva Hendi Muhammad Andi Sunyoto Andi Sunyoto Anggit Dwi Hartanto, Anggit Dwi Arief Setyanto Arifuddin, Danang Arnila Sandi Aryawijaya Asadulloh, Bima Pramudya Assani, Moh. Yushi Atin Hasanah Atin Hasanah Atmoko, Alfriadi Dwi Aulya, Fiola Utri BAYU SATRIYA, RIYAN Bhahari, Rifqi Hilal Candra Rusmana Cynthia Widodo Cynthia Widodo Dede - Sandi Dede Husen Dede Sandi Dewi Kartika Dimaz Arno Prasetio Elsa Virantika Ema Utami Erna Utami Fachri Ardiansyah Fajar Abdillah, Moh Fajar Aji Prayoga Haris, Ruby Hartatik Haryo, Wasis Hasirun Hasirun Hendrik Hendrik Henri Kurniawan Hidayatunnisa'i Indra Irawanto Joang Ipmawati Kanoena, Melcior Paitin Karisma Septa Kresna Khairullah, Irfan Khalil Khoirunnita, Aulia Khrisna Irham Fadhil Pratama Kusirini Kusrini Kusrini KUSRINI Kusrini Kusrini - - Kusrini Kusrini Kusrini Kusrini Kusrini Kusrini Kusrini Kusrini Kusrini Kusrini Kusrini Kusrini Kusrini, Kusrini Luthfi Nurul Huda M Andika Fadhil Eka Putra M. Nurul Wathani Maehendrayuga, Arief Majid Rahardi Maringka, Raissa Muh. Syarif Hidayatullah Muhammad Firdaus Abdi Muhammad Firdaus Abdi Muhammad Irvan Shandika Muhammad Reza Riansyah Nadhira Triadha Pitaloka Nayoma, Fisan Syafa Neni Firda Wardani Tan Ni’matur Rohim Nurul Zalza Bilal Jannah Nurus Sarifatul Ngaeni Omar Muhammad Altoumi Alsyaibani Pattimura, Yudha Bagas Pebri Antara Pramono, Aldi Yogie Prastyo, Rahmat Prema Adhitya Dharma Kusumah Puji Prabowo, Dwi Qurniaty, Charlen Alta Raffa Nur Listiawan Dhito Eka Santoso Rahayu, Christa Putri Rifda Faticha Alfa Aziza Rita Wati Ritham Tuntun Rizal Khadarusman Rodney Maringka Sabda Sastra Wangsa Saifulloh Saifulloh Salman Alfaris Salman Alfaris, Salman San Sudirman Sekarsih, Fitria Nuraini Sepriadi - Bumbungan Sepriadi Bumbungan Sri Yanto Qodarbaskoro Sry Faslia Hamka Suyatmi Suyatmi Suyatmi Suyatmi Syaiful Huda Syaiful Ramadhan Tamuntuan, Virginia Taryoko Taryoko Teguh Arlovin Thedjo Sentoso triadin, Yusrinnatul Jinana Van Daarten Pandiangan Virginia Tamuntuan Wahyu Pujiharto, Eka Widyanto, Agung Wirawan, Tegar Yusa, Aldo Yuza, Adela Zaenul Amri