Claim Missing Document
Check
Articles

Found 15 Documents
Search

Acapella-based music generation with sequential models utilizing discrete cosine transform Saputra, Julian; Prasetiadi, Agi; Kresna, Iqsyahiro
IAES International Journal of Artificial Intelligence (IJ-AI) Vol 13, No 3: September 2024
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijai.v13.i3.pp3371-3380

Abstract

Making musical instruments that accompany vocals in a song depends on the mood quality and the music composer’s creativity. The model created by other researchers has restrictions that include being limited to musical instrument digital interface files and relying on recurrent neural networks (RNN) or Transformers for the recursive generation of musical notes. This research offers the world’s first model capable of automatically generating musical instruments accompanying human vocal sounds. The model we created is divided into three types of sound input: short input, combed input, and frequency sound based on the discrete cosine transform (DCT). By combining the sequential models such as Autoencoder and gated recurrent unit (GRU) models, we will evaluate the performance of the resulting model in terms of loss and creativity. The best model has a performance evaluation that resulted in an average loss of 0.02993620155. The hearing test results from the sound output produced in the frequency range 0-1,600 Hertz can be heard clearly, and the tones are quite harmonious. The model has the potential to be further developed in future research in the field of sound processing.
Automatic Vocal Completion for Indonesian Language Based on Recurrent Neural Network Prasetiadi, Agi; Dwi Sripamuji, Asti; Riski Amalia, Risa; Saputra, Julian; Ramadhanti, Imada
IT Journal Research and Development Vol. 9 No. 1 (2024)
Publisher : UIR PRESS

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.25299/itjrd.2024.14171

Abstract

Most Indonesian social media users under the age of 25 use various words, which are now often referred to as slang, including abbreviations in communicating. Not only causes, but this variation also poses challenges for the natural language processing of Indonesian. The previous researchers tried to improve the Recurrent Neural Network to correct errors at the character level with an accuracy of 83.76%. This study aims to normalize abbreviated words in Indonesian into complete words using a Recurrent Neural Network in the form of Bidirected Long Short-Term Memory and Gated Recurrent Unit. The dataset is built with several weight confgurations from 3-Gram to 6-Gram consisting of words without vowels and complete words with vowels. Our model is the frst model in the world that tries to fnd incomplete Indonesian words, which eventually become fully lettered sentences with an accuracy of 97.44%.
Analysis Of Physical Fitness Level Of Class VIII Students Of SMP Negeri 17 Krui Saputra, Julian; Ariesna , Rachmat Dody; Bela, Yohana
Social Sciences Journal Vol. 1 No. 1 (2024): November
Publisher : Utami Publisher

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.70963/soc.v1i1.94

Abstract

The problem in this research is the low level of physical fitness of the students of Clas VII SMP Negeri 17 Krui. The purpose of this study was to determine how the level of physical fitness of the students of Clas VII SMP Negeri 17 Krui.This type of research is descriptive. The population in this study were all students of Clas VII SMP Negeri 17 Krui. While the sample amounted to 40 people with a sampling technique that is proportionate stratified random sampling technique. The research instrument uses an Indonesian physical fitness test measuring instrument. The data analysis technique used descriptive percentage analysis.Based on the results of the study, it was found that the level of physical fitness of the students of Clas VII SMP Negeri 17 Krui was in the less detailed category, namely; 1) running 50 meters is in the moderate category. 2) Lifting the body hanging / hanging elbow bends are in the less category. 3) lie down for 60 seconds in the good category. 4) vertical jump is in the less category. 5) running 1000/800 meters is in the less category .
PEMBERDAYAAN MASYARAKAT PESISIR DESA LONTAR, KABUPATEN SERANG, BANTEN MELALUI PENINGKATAN KEMAMPUAN TEKNIK SURVEI PEMETAAN POTENSI DESA PESISIR Prabowo, Nico Wantona; Saputra, Julian; Jasmine, Agitha Saverti; Khalifa, Muta Ali; Supadminingsih, Fahresa Nugraheni; Munandar, Erik; Pratama, Ginanjar; Dewantara, Esza Cahya; Saad, Moch; Santoso, Prakas; Hasanah, Afifah Nurazizatul; Aryani, Desy; Azkia, Lana Izzul; Meata, Bhatara Ayi; Syafrie, Hendrawan
Jurnal Pemberdayaan Maritim Vol 7 No 2 (2025): Journal of Maritime Empowerment
Publisher : Lembaga Penelitian, Pengabdian Masyarakat, dan Penjaminan Mutu, Universitas Maritim Raja Ali Haji

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.31629/jme.v7i2.7097

Abstract

Masyarakat pesisir memiliki peran penting dalam pengelolaan sumber daya pesisir yang berkelanjutan. Namun, keterbatasan akses terhadap teknologi dan pengetahuan dalam pemetaan sumber daya pesisir sering menjadi kendala dalam pengambilan keputusan berbasis data. Penelitian ini bertujuan untuk memberdayakan masyarakat pesisir Desa Lontar, Kabupaten Serang, Banten, melalui peningkatan kemampuan teknik survei dan pemetaan potensi desa pesisir. Metode yang digunakan meliputi pelatihan teori dan praktik survei lapangan, penggunaan teknologi Global Positioning System (GPS), analisis citra satelit, serta pengolahan data spasial menggunakan Sistem Informasi Geografis (SIG). Hasil kegiatan menunjukkan bahwa peserta pelatihan, yang terdiri dari perangkat desa, nelayan, dan masyarakat pesisir, mengalami peningkatan pemahaman terhadap teknik survei dan pemetaan. Peta penggunaan lahan yang dihasilkan mencakup informasi tentang ekosistem mangrove, tambak, pemukiman, serta utilitas lainnya. Evaluasi pasca-pelatihan menunjukkan bahwa 85% peserta mampu menggunakan GPS dan perangkat lunak pemetaan secara mandiri. Hasil dari kegiatan ini tidak hanya memberikan gambaran mengenai teknik survei pemetaan, tetapi juga ikut membantu pemerintah khususnya melalui perangkat desa dalam hal upaya pengayaan/pembaruan data dan informasi guna pengelolaan wilayah pesisir secara berkelanjutan.
CORAL POINT COUNT WITH EXCEL EXTENSIONS (CPCE) SOFTWARE: CORAL REEF CONDITION AT SMALL ISLANDS IN INDONESIA Utami, Risnita Tri; Yulfiperius, Yulfiperius; Supadminingsih, Fahresa Nugraheni; Saputra, Julian
JST (Jurnal Sains dan Teknologi) Vol. 11 No. 1 (2022)
Publisher : Universitas Pendidikan Ganesha

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (288.218 KB) | DOI: 10.23887/jstundiksha.v11i1.43337

Abstract

Terumbu karang adalah ekosistem laut yang menyediakan rumah bagi sekitar 25% organisme laut. Beberapa dekade terakhir, penggunaan metode Underwater Photo Transect (UPT) untuk pemantauan terumbu karang semakin populer. Penelitian ini bertujuan untuk memantau kondisi terumbu karang di Pulau Dua, Pulau Tikus, Pulau Belanda, dan Pulau Dapur. Penelitian ini menggunakan software Coral Point Count with Excel extensions (CPCe), untuk meningkatkan efisiensi upaya pemantauan terumbu karang. Transek foto diambil dengan penyelaman scuba. Foto komunitas terumbu karang diambil setiap 1m di sepanjang garis transek sepanjang 50m. Sebanyak 30 sampel titik acak dipilih untuk setiap foto. Beberapa foto digabungkan dan untuk setiap titik dikodekan sesuai dengan kode masing-masing kategori, biota, dan substrat pada titik acak. Hasil penelitian menunjukkan kondisi terumbu karang di Bengkulu termasuk dalam kategori sedang hingga baik, sedangkan kondisi terumbu karang di Kepulauan Seribu termasuk dalam kategori buruk hingga. Genus karang yang paling banyak ditemukan di Bengkulu adalah Porites dan Pocillopora, sedangkan di Kepulauan Seribu adalah Porites dan Acropora.