Claim Missing Document
Check
Articles

Found 5 Documents
Search
Journal : Physics Education Research Journal

Pengembangan Ensiklopedia Alat Ukur Fisika sebagai Sumber Belajar untuk Siswa SMP/MTs Isfaul Maulina; Hamdan Hadi Kusuma; Muhammad Izzatul Faqih
Physics Education Research Journal Vol 3, No 1 (2021)
Publisher : Faculty of Science and Education, UIN Walisongo Semarang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.21580/perj.2021.3.1.6151

Abstract

This research aims to produce a product in the form of an encyclopedia of physics measuring instruments and to find out the quality of the encyclopedia of physics measuring instruments as a learning resource for SMP / MTs students. The type of research used in this research is Research and Development (RD), referring to the development of Borg Gall which has been modified by Sugiyono. The subjects of this study were students of class VII SMP Negeri 1 Brangsong. Data collection techniques in this study were carried out by means of interviews and questionnaires. The results of the encyclopedia quality assessment based on the evaluation of material experts are 100% with very good category, media experts are 94.29% with very good category, assessment from science teachers is 93.33% with very good category, and the assessment of student responses in the small-scale trial was 97.78% with the very good category. Based on this assessment, it can be concluded that the encyclopedia of physics measuring instruments developed has very good quality and is suitable for use as a learning resource for SMP / MTs students.
Utilization of IP LM393 Sensor Module as an Automation System for a Portable Gallon Pump Hardianto, Firman; Shofani, Maya; Kusuma, Hamdan Hadi
Physics Education Research Journal Vol 5, No 2 (2023)
Publisher : Faculty of Science and Education, UIN Walisongo Semarang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.21580/perj.2023.5.2.11099

Abstract

Research has been conducted on developing an automatic gallon pump based on the IP LM393 sensor. This research aims to provide alternative solutions to avoid direct contact as the cause of COVID-19 transmission. The research method used includes the stages of designing, manufacturing, and testing the automatic gallon pump based on the IP LM393 sensor. The results showed that installing IP LM393 in a portable gallon pump can help people avoid direct contact when pouring water. This research proves that some materials can be sensor barriers at specific distances with an effective light intensity range of 19-23 lux.
Effect of Molarity on Double Layer Photocatalytic Activity ZnO/ZnO:Ag for Metanil Yellow Degradation Anggita, Sheilla Rully; Kusuma, Hamdan Hadi; Sumarti, Heni; Teke, Sosiawati
Physics Education Research Journal Vol 5, No 1 (2023)
Publisher : Faculty of Science and Education, UIN Walisongo Semarang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.21580/perj.2023.5.1.13301

Abstract

Double layer (DL) ZnO/ZnO:Ag has been synthesized with variations in molarity of 0.1, 0.3, 0.5,  and 0.7 M and its application as a degrading agent for methanil yellow dye. This study aims to determine the effect of the molarity of the DL ZnO/ZnO:Ag on crystallinity and photocatalytic activity for methanil yellow degradation. DL ZnO/ZnO:Ag was synthesized using sol-gel technique and deposited with spray coating technique. The results of DL ZnO/ZnO:Ag were characterized by XRD to determine the crystallinity and particle size. The photocatalytic activity was carried out by immersing the DL ZnO/ZnO:Ag layer in 10 ppm methanil yellow solution and irradiating it with UV light for 4 hours and then tested using UV-Vis spectroscopy to get the percentage of methanil yellow degradation. The results showed that the crystallinity of the DL ZnO/ZnO:Ag for all molarity variations had a hexagonal wurtzite structure. Grains size increase as molarity increases from 0.1 to 0.5 M. However, if the concentration continues to be increased to 0.7M, the grain size decreases. Photocatalytic activity is increasing every hour, as indicated by the increasing percentage of degradation. Precursor in 0.5 M has the maximum percentage of degradation is 25.32%.
Utilization of IP LM393 Sensor Module as an Automation System for a Portable Gallon Pump Hardianto, Firman; Shofani, Maya; Kusuma, Hamdan Hadi
Physics Education Research Journal Vol. 5 No. 2 (2023)
Publisher : Faculty of Science and Education, UIN Walisongo Semarang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.21580/perj.2023.5.2.11099

Abstract

Research has been conducted on developing an automatic gallon pump based on the IP LM393 sensor. This research aims to provide alternative solutions to avoid direct contact as the cause of COVID-19 transmission. The research method used includes the stages of designing, manufacturing, and testing the automatic gallon pump based on the IP LM393 sensor. The results showed that installing IP LM393 in a portable gallon pump can help people avoid direct contact when pouring water. This research proves that some materials can be sensor barriers at specific distances with an effective light intensity range of 19-23 lux.
Effect of Molarity on Double Layer Photocatalytic Activity ZnO/ZnO:Ag for Metanil Yellow Degradation Anggita, Sheilla Rully; Kusuma, Hamdan Hadi; Sumarti, Heni; Teke, Sosiawati
Physics Education Research Journal Vol. 5 No. 1 (2023)
Publisher : Faculty of Science and Education, UIN Walisongo Semarang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.21580/perj.2023.5.1.13301

Abstract

Double layer (DL) ZnO/ZnO:Ag has been synthesized with variations in molarity of 0.1, 0.3, 0.5,  and 0.7 M and its application as a degrading agent for methanil yellow dye. This study aims to determine the effect of the molarity of the DL ZnO/ZnO:Ag on crystallinity and photocatalytic activity for methanil yellow degradation. DL ZnO/ZnO:Ag was synthesized using sol-gel technique and deposited with spray coating technique. The results of DL ZnO/ZnO:Ag were characterized by XRD to determine the crystallinity and particle size. The photocatalytic activity was carried out by immersing the DL ZnO/ZnO:Ag layer in 10 ppm methanil yellow solution and irradiating it with UV light for 4 hours and then tested using UV-Vis spectroscopy to get the percentage of methanil yellow degradation. The results showed that the crystallinity of the DL ZnO/ZnO:Ag for all molarity variations had a hexagonal wurtzite structure. Grains size increase as molarity increases from 0.1 to 0.5 M. However, if the concentration continues to be increased to 0.7M, the grain size decreases. Photocatalytic activity is increasing every hour, as indicated by the increasing percentage of degradation. Precursor in 0.5 M has the maximum percentage of degradation is 25.32%.