Claim Missing Document
Check
Articles

Found 3 Documents
Search
Journal : Sistemasi: Jurnal Sistem Informasi

OPTIMASI JUMLAH PRODUKSI ROTI UD PRIMA SARI MENGGUNAKAN METODE LOGIKA FUZZY Loneli Costaner; Wenny Syafitri; Guntoro Guntoro
Sistemasi: Jurnal Sistem Informasi Vol 8, No 3 (2019): Sistemasi: Jurnal Sistem Informasi
Publisher : Program Studi Sistem Informasi Fakultas Teknik dan Ilmu Komputer

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (1252.855 KB) | DOI: 10.32520/stmsi.v8i3.537

Abstract

Logika fuzzy merupakan salah satu metode yang dapat memebantu permasalah manusia, baik sekala kecil menengah maupun tingkat tinggi. Logika fuzzy termasuk bagian dari keilmuan kecerdasan buatan yang dapat mengolah data dengan mempresentasikan seperti otak manusia. Metode logika fuzzy sering digunakan dalam menyelesaikan berbagai permasalahan optimasi maupun prediksi. Dalam pengolahan data dalam inferensi fuzzy dapat mengenali data data kegiatan yang sudah lama seabagai standar pengambilan keputusan yang akan datang, salah satunya untuk mengoptimasi jumlah produksi dari permintaan permintaan sebelumnya. Mengoptimasi jumlah produksi roti dapat memberikan perkiraan berapa jumlah produksi yang akan dihasilkan guna memenuhi permintaan. UD Prima Rasa salah satu Usaha Dadang perorangan dipekanbaru yang memproduksi roti setiap harinya guna memenuhi permintaan pelanggan, hal ini membuat produksi harus dikelola dengan baik agar tidak salah perkiraan dalam menghasilkan roti. Permintaan yang bisa naik dan juga bisa turun terkadang membuat UD Prima Rasa kewalahan dalam memenuhi proses produksi karena tidak mengetahui dengan pasti berapa yang seharusnya maksimal roti yang harus diproduksi agar tidak terjadi kekurangan yang mengakibatkan lambatnya pendistribusian terlambat dan kue tidak lama tersimpan digudang tempat penyimpanan. Metode penelitian ini terdiri dari beberapa tahapan diantaranya identifikasi masalah, menganalisa masalah, mengumpulkan data, memberikan inferensi sistem fuzzy, menguji dan mengevaluasi
Importance Performance Analysis (IPA) of Patient Satisfaction with Fuzzy Logic at the Rumbai Maternity Clinic Costaner, Loneli; Lisnawita, Lisnawita; Guntoro, Guntoro
Sistemasi: Jurnal Sistem Informasi Vol 13, No 1 (2024): Sistemasi: Jurnal Sistem Informasi
Publisher : Program Studi Sistem Informasi Fakultas Teknik dan Ilmu Komputer

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.32520/stmsi.v13i1.3527

Abstract

This study focuses on the level of patient satisfaction at the Rumbai Maternity Clinic. Quality of service is the main key that influences patient trust and satisfaction with this health facility. Therefore, the purpose of this study was to analyze patient satisfaction with the Importance Performance Analysis (IPA) method using fuzzy logic. This study will identify service attributes that are considered important by patients and evaluate the extent to which patient expectations have been met at the clinic. Attributes studied include cleanliness of facilities, courtesy of medical staff, availability of medicines, quality of medical services, information conveyed to patients, and others. The (IPA) method will help measure the level of importance and performance of each service attribute based on patient perceptions. Fuzzy logic is used to overcome the complexity and subjectivity of assessing patient satisfaction. The results of this study are expected to provide a comprehensive picture of patient perceptions and satisfaction at the Rumbai Maternity Clinic. Clinical management can use the results of this study to identify service improvement priorities and increase patient satisfaction. The scientific contribution of this research lies in combining the IPA method and fuzzy logic in the analysis of patient satisfaction. Thus, this research has the potential to help improve the quality of health services at the Rumbai Maternity Clinic and can be applied as a guide for developing similar methods in other health facilities.
Feature Extraction Analysis for Diabetic Retinopathy Detection Using Machine Learning Techniques Costaner, Loneli; Lisnawita, Lisnawita; Guntoro, Guntoro; Abdullah, Abdullah
Sistemasi: Jurnal Sistem Informasi Vol 13, No 5 (2024): Sistemasi: Jurnal Sistem Informasi
Publisher : Program Studi Sistem Informasi Fakultas Teknik dan Ilmu Komputer

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.32520/stmsi.v13i5.4600

Abstract

Diabetic retinopathy is a serious complication of diabetes that can lead to blindness if not detected and treated early. Automated detection of diabetic retinopathy requires effective feature extraction techniques to enhance diagnostic accuracy. This study aims to develop a method for detecting diabetic retinopathy by utilizing Local Binary Pattern (LBP) combined with wavelet transform, and then classifying the extracted features using Support Vector Machine (SVM). The approach includes feature extraction from retinal images using LBP and wavelet transform. The extracted features are subsequently classified with SVM to evaluate performance in detecting diabetic retinopathy. Analysis results show that the dominant feature is found in the fifth row with a value of 0.57006, indicating the effectiveness of the LBP method in feature extraction. The developed model demonstrates high performance with an accuracy of 95.59%, precision of 96%, recall of 97.96%, and F1-score of 96.97%. The combination of feature extraction methods with SVM proves to be effective and reliable in detecting diabetic retinopathy, offering low error rates and high accuracy, thus potentially serving as a valuable tool in clinical diagnosis
Co-Authors Abdullah Abdullah Ahmad Zamsuri, Ahmad Alfarasy, Febrizal Ali, Helmiyati Abdullah Anto Ariyanto Anto Ariyanto, Anto Antonius Fernando Aulia, Mhd. Iqbal AYU RAHMAWATI Bayu Febriadi, Bayu Budia Misri Budianto Hamuddin Budiastuti, Susanti Costaner, Loneli Costaner David Setiawan David Setiawan, David Djunaedi Djunaedi Elfrida Ratnawati Fadhillah, Resty Fenty Widya Fitria, Poppy Hamzah Eteruddin Hamzah Hamzah Handoko, Habib Hari Gunawan Herni Utami Rahmawati idel waldelmi, idel Ikhwan, Ferdy Iqbal Bukhori Istiatin, Istiatin Jeni Wardi Johar, Olivia Anggie Lasri Nijal Latifa Siswati Lisnawita Lisnawita Loneli Costaner Lubis, Ahmad Fahmi Alhafiz Maisarah Maisarah Maisarah, Maisarah Makhrani Sari Ginting Mariza Devega Marzuti Isra Maulina, Viny Meilano, Dimas Mhd. Arief Hasan, Mhd. Arief Monika, Winda Monika Muhamad Sadar, Muhamad Muhammad Fikri Muhammad Iqbal Muhammad Yusuf Dibisono Mulyara, Budi Musfawati Nurhamin Nurhamin Nurholidan Siregar Nurholidan Siregar Nurul Hasanah Ovie, Ingrid Pandu Pratama Putra, Pandu Pratama Rahmad Dian Rahmad Syah Putra Ratu Mutiara Siregar Rina Maharany Ririn Sari Wati Rizky Octa Putri Charin Roosmawati, Febriana SANTOSO SANTOSO Sapiri, Muhtar Saputra, Septian Tri Sari, Makhrani Sasi Utami Simorangkir, Jansihar Sinaga, Anisyah Sri Utaminingsih Sudarwati Sudarwati Suhardi Suhardi Sunaryanto, Hadi Sutejo Sutejo Syafitri (Scopus ID: 57200085316), Wenni Taufik, Kemal Tohir, Kurnainy Wagino Wenny Syafitri Wibisono, Moh Arief Aryo Yuhelmi Yuhelmi Yusuf Dibisono, Mhd zamzami Zamzami, Zamzami Zulham Effendi