Claim Missing Document
Check
Articles

Found 2 Documents
Search
Journal : VALENSI

The Effect of Acetonitrile Solvent on the Quantitative Determination of Europium (III) by Voltammetry and its Optimization using the Box-Behnken Design Uji Pratomo; Ari Hardianto; Yeni Wahyuni Hartati; Husein Hernandi Bahti; Santhy Wyantuti
Jurnal Kimia Valensi Jurnal Kimia VALENSI Volume 8, No. 1, May 2022
Publisher : Syarif Hidayatullah State Islamic University

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.15408/jkv.v8i1.22508

Abstract

There is often a drawback during the determination of Eu in aqueous solvents using the voltammetric method. The current signal from water can reduce that of the element, which causes difficulty while separating the Eu signal from other rare earth elements (REE). Therefore, this study used acetonitrile as a solvent due to its high electrical conductivity and wide potential range. The optimum conditions for the determination of Eu in acetonitrile using the Box-Behnken design include 74.56 seconds deposition time, 0.125 V amplitude modulation, and -2.0 V potential deposition. The platinum electrode's performance showed a recovery value of 98.91% and accuracy and precision (in %RSD) of 96.67% and 1.11%, respectively. Furthermore, detection and quantitation limits of 0.6 mg/L and 5.1 mg/L were recorded from the analysis. It concluded that the differential pulse voltammetry method was applied to determine the presence of Eu in acetonitrile.
Box-Behnken Experimental Design for Electrochemical Aptasensor Optimization on Screen Printed Carbon Electrode/Silica-Ceria Zakiyyah, Salma Nur; Eddy, Diana Rakhmawaty; Firdaus, Muhammad Lutfi; Subroto, Toto; Hartati, Yeni Wahyuni
Jurnal Kimia Valensi Jurnal Kimia VALENSI Volume 9, No. 1, May 2023
Publisher : Syarif Hidayatullah State Islamic University

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.15408/jkv.v9i1.27493

Abstract

This study aims to optimize the epithelial sodium channel (ENaC) electrochemical aptasensor with the Box-Behnken experimental design. ENaC is a protein that plays a role in sodium ion transport in several epithelial tissues and is associated with hypertension. The ENaC protein aptamer is held in place in the electrochemical aptasensor by a modified screen-printed carbon electrode (SPCE) of silica-ceria composite (SiO2-CeO2). The unique structure of a silica matrix with high biocompatibility can form composites through a hydrothermal process. The Box-Behnken (BBD) experimental design is an efficient optimization method of factors that affect the experiment at three levels. The FTIR results of the silica-ceria composites were 549.35 cm-1 (Ce-O), 1095.3 cm-1 (Si-O-Si), and 491.28 cm-1 (Si-O). Meanwhile, SPCE/silica-ceria characterized by differential pulse voltammetry (DPV) showed an increase in peak current [Fe(CN)6]3-/4- from 3.190 μA to 9.073 μA. Three experimental factors, aptamer concentration, streptavidin incubation time, and aptamer incubation time, were optimized with BBD and obtained at 0.5 μg.mL-1, 30 minutes, and 1 hour. The optimum conditions observed resulted in a selective current response for ENaC protein detection. The optimization results can be applied to aptamer-based ENaC protein detection in samples.