Claim Missing Document
Check
Articles

Found 2 Documents
Search
Journal : Jurnal Sains dan Informatika

Teknik Bagging Dan Boosting Pada Algoritma CART Untuk Klasifikasi Masa Studi Mahasiswa Ahmad Rusadi Arrahimi; Muhammad Khairi Ihsan; Dwi Kartini; Mohammad Reza Faisal; Fatma Indriani
Jurnal Sains dan Informatika Vol. 5 No. 1 (2019): Jurnal Sains dan Informatika
Publisher : Teknik Informatika, Politeknik Negeri Tanah Laut

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.34128/jsi.v5i1.171

Abstract

Undergraduate Students data in academic information systems always increases every year. Data collected can be processed using data mining to gain new knowledge. The author tries to mine undergraduate students data to classify the study period on time or not on time. The data is analyzed using CART with bagging techniqu, and CART with boosting technique. The classification results using 49 testing data, in the CART algorithm with bagging techniques 13 data (26.531%) entered into the classification on time and 36 data (73.469%) entered into the classification not on time. In the CART algorithm with boosting technique 16 data (32,653%) entered into the classification on time and 33 data (67,347%) entered into the classification not on time. The accuracy value of the classification of study period of undergraduate students using the CART algorithm is 79.592%, the CART algorithm with bagging technique is 81.633%, and the CART algorithm with boosting technique is 87.755%. In this study, the CART algorithm with boosting technique has the best accuracy value.
Analisis Perbandingan Metode Harmonic Mean dan Local Mean Vector Dalam Penyeleksian Tetangga Pada Algoritma KNN Said, Muhammad Al Ichsan Nur Rizqi; Faisal, Mohammad Reza; Kartini, Dwi; Budiman, Irwan; Saragih, Triando Hamonangan
Jurnal Sains dan Informatika Vol. 9 No. 2 (2023): Jurnal Sains dan Informatika
Publisher : Teknik Informatika, Politeknik Negeri Tanah Laut

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.34128/jsi.v9i2.376

Abstract

Algoritma K Nearest Neighbour (KNN) merupakan salah satu algoritma klasifikasi yang telah digunakan pada banyak penelitian, namun KNN memiliki beberapa kekurangan diantaranya adalah pada pemilihan jumlah tetangga terdekat. Jika jumlah tetangga terdekat terlalu kecil maka akan sensitif terhadap derau (noise) dan jika jumlah tetangga terdekat terlalu besar kemungkinan ada tetangga outlier dari kelas lain. Majority Voting juga merupakan metode yang sederhana dan ini bisa jadi masalah jika jarak bervariasi. Salah satu solusi untuk masalah outlier adalah menggunakan Local Mean Vector dengan menambahkan Harmonic Mean untuk membantunya. Penelitian ini bertujuan untuk mengetahui perbandingan kinerja teknik penyeleksian tetangga terakhir yang didapatkan menggunakan Local Mean Vector dan Harmonic Mean. Dari Hasil dari penelitian ini menunjukkan bahwa teknik penyeleksian tetanggal berbasis Local Mean Vector dan Harmonic Mean memberikan akurasi lebih baik yaitu sebesar 0,78 dibandingkan dengan teknik Majority Voting dengan akurasi sebesar 0.75.
Co-Authors Abdul Gafur Abdullayev, Vugar Achmad Zainudin Nur Adawiyah, Laila Admi Syarif Ahmad Rusadi Ahmad Rusadi Arrahimi - Universitas Lambung Mangkurat) Ahmad Rusadi Arrahimi - Universitas Lambung Mangkurat) Andi Farmadi Andi Farmadi Andi Farmadi Angga Maulana Akbar Annisa Rizqiana Arie Sapta Nugraha Arif, Nuuruddin Hamid Arifin Hidayat Azizah, Azkiya Nur Bachtiar, Adam Mukharil Bahriddin Abapihi Bayu Hadi Sudrajat Dike Bayu Magfira, Dike Bayu Djordi Hadibaya Dodon Turianto Nugrahadi Dwi Kartini Dwi Kartini Dwi Kartini Dwi Kartini, Dwi Emma Andini Fatma Indriani Fatma Indriani Fatma Indriani Favorisen R. Lumbanraja Fitra Ahya Mubarok Fitriyana, Silfia Friska Abadi Friska Abadi Friska Abadi Ghinaya, Helma Hanif Rahardian Herteno, Rudy Irwan Budiman Irwan Budiman Irwan Budiman Ivan Sitohang Julius Tunggono Jumadi Mabe Parenreng Junaidi, Ridha Fahmi Karlina Elreine Fitriani Keswani, Ryan Rhiveldi Kevin Yudhaprawira Halim Kurnianingsih, Nia Lilies Handayani Liling Triyasmono Lisnawati Mahmud Mahmud Mauldy Laya Mera Kartika Delimayanti Miftahul Muhaemen Muflih Ihza Rifatama Muhamad Ihsanul Qamil Muhammad Al Ichsan Nur Rizqi Said Muhammad Alkaff Muhammad Angga Wiratama Muhammad Fauzan Nafiz Muhammad Haekal Muhammad Haekal Muhammad Iqbal Muhammad Irfan Saputra Muhammad Itqan Mazdadi Muhammad Janawi Muhammad Khairi Ihsan Muhammad Mada Muhammad Mursyidan Amini Muhammad Rizky Adriansyah Muhammad Rusli Muhammad Sholih Afif Muhammad Zaien MUJIZAT KAWAROE Muliadi Muliadi Muliadi Muliadi Aziz Muliadi Muliadi Muliadi Muliadi Muliadi Muliadi Mustofa, Fahmi Charish Ngo, Luu Duc Nor Indrani Noryasminda Nugrahadi, Dodon Nurlatifah Amini Nursyifa Azizah Oni Soesanto Prastya, Septyan Eka Purnajaya, Akhmad Rezki Putri Nabella Radityo Adi Nugroho Radityo Adi Nugroho Rahayu, Fenny Winda Rahmad Ubaidillah Rahmat Ramadhani Rahmat Ramadhani Rahmina Ulfah Aflaha Ratna Septia Devi RAUDLATUL MUNAWARAH Reina Alya Rahma Reza Rendian Septiawan Riadi, Putri Agustina Rinaldi Riza Susanto Banner Rizal, Muhammad Nur Rizki, M. Alfi Rizky, Muhammad Hevny Rossyking, Favorisen Rozaq, Hasri Akbar Awal Rudy Herteno Rudy Herteno Rudy Herteno Rudy Herteno Said, Muhammad Al Ichsan Nur Rizqi SALLY LUTFIANI Salsabila Anjani Saputro, Setyo Wahyu Saragih, Triando Hamonangan Sarah Monika Nooralifa Sari, Risna Sa’diah, Halimatus Septyan Eka Prastya Septyan Eka Prastya Setyo Wahyu Saputro Setyo Wahyu Saputro Siti Aisyah Solechah Solly Aryza Sri Redjeki Sri Redjeki Sugiarto, Iyon Titok Sulastri Norindah Sari Suryadi, Mulia Kevin Tri Mulyani Triando Hamonangan Saragih Umar Ali Ahmad Utami, Juliyatin Putri Vina Maulida, Vina Wahyu Caesarendra Wahyu Dwi Styadi Wahyudi Wahyudi Wildan Panji Tresna Winda Agustina Yenni Rahman YILDIZ, Oktay Yudha Sulistiyo Wibowo Yunida, Rahmi