Claim Missing Document
Check
Articles

Found 5 Documents
Search
Journal : JOURNAL ONLINE OF PHYSICS

ANALISA MEKANISME PENDORONG RESERVOIR “AB” FORMASI CIBULAKAN BAWAH CEKUNGAN JAWA BARAT UTARA Bagus Adhitya; Hari Wiki Utama
JOURNAL ONLINE OF PHYSICS Vol. 6 No. 1 (2020): JOP (Journal Online of Physics) Vol 6 No 1
Publisher : Prodi Fisika FST UNJA

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.22437/jop.v6i1.10430

Abstract

Abstrak Mekanisme Pendorong reservoir maksudnya adalah jenis tenaga pendorong yang berasal dari formasi reservoir. Tenaga pendorong ini berperan untuk memproduksikan minyak dari reservoir masuk ke lubang bor dan naik kepermukaan tanpa bantuan pompa. Namun energi pendorong ini tidak akan bertahan sampai akhir produksi suatu lapangan, karena seiring dengan proses produksi fluida reservoir ke permukaan, akan terjadi pengurangan tekanan sehingga tenaga pendorong alami hanyak akan bertahan pada saat tahap primary recovery atau pada saat Pwf (well flowing pressure) lebih besar dari Ps (static pressure). Mengetahui jenis mekanisme pendorong ini akan membantu dalam mengetahui berapa lama tahap primary recovery ini berlangsung sehingga perencanaan proses produksi akan semakin baik, dan juga dengan mengetahui jenis mekanisme pendorong ini akan membantu dalam proses simulasi reservoir agar model dinamis yang dibuad akan merepresentasikan reservoir yang sebenarnya. Terdapat 5 jenis mekanisme pendorong yang bekerja pada suatu reservoir, meliputi: depletion drive, gas cap drive, water drive, gravity drainage drive, dan combination drive. Untuk mengidentifikasi jenis mekanisme pendorong yang bekerja pada suatu reservoir dapat dilakukan dengan metode kualitatif dan metode kuantitatif. Pada metode kualitatif dengan menganalisa trend produksi minyak, air, gas, water cut, GOR, dan tekanan reservoir. Dari trend yang terbentuk akan diketahui bagaimana karakteristik reservoir berdasarkan mekanisme pendorong yang bekerja. Pada metode kuantitatif dilakukan analisa Drive Index untuk menentukan mekanisme pendorong yang bekerja pada suatu reservoir. Dari hasil analisa kualitatif dan kuantitatif diketahui mekanisme pendorong yang bekerja pada reservoir AB adalah combination drive, yang merupakan gabungan dari depletion drive dan weak water drive. Justifikasi weak water drive pada reservoir AB dikarenakan nilai RF (recovery factor) sampai akhir produksi baru mencapai 15.2%, yang artinya masih ada cadangan minyak yang tersisa sebesar 84.8% di reservoir AB. Reservoir AB berada pada Cekungan Jawa Barat Utara, Anggota Formasi Cibulakan Bawah. Berdasarkan ciri korelasi litologi dengan Cekungan Sumatera Selatan Anggota Formasi Cibulakan Bawah ini terdiri dari setara Formasi Talangakar dan Setara Formasi Baturaja, dan untuk reservoir AB ini termasuk kedalam setara Formasi Talangakar. Dari analisa fosil diketahui Formasi Talangakar berumur Miosen bawah, dan dari analisa coring formasi ini diendapkan pada lingkungan transisi dibuktikan dengan perselingan serpih, batupasir, dan batugamping dengan sisipan napal, batulanau, dan batubara. Formasi Talangakar ini adalah formasi yang sangat penting di Cekungan Jawa Barat Utara karena berperan sebagai source rock, reservoir rock, dan cap rock. Kata Kunci: Mekanisme Pendorong; Formasi Talangakar; Cekungan Jawa Barat Utara Abstract Reservoir Drive mechanism means the type of natural driving force that origin from the reservoir formation. This driving force plays a role in producing oil from the reservoir into the borehole and rising to the surface without the aid of a pump. However, this driving energy will not last until the end of a field's production, because along with the production process, there will be a reduction in pressure so that the natural driving force will only last during the primary recovery stage or when the Pwf is higher than Ps. Knowing the type of driving mechanism will help in knowing how long this primary recovery stage will occurred, so that planning the production process will be preferable, and it will help the dynamic model that is created will represent the real reservoir. There are 5 types of drive mechanisms that act on a reservoir such as; depletion drive, gas cap drive, water drive, gravity drainage drive, and combination drive. Qualitative and quantitative methods can be used to identify the type of drive mechanism that act on a reservoir. Qualitative methods used by analyzing the production trends of oil, water, gas, water cut, GOR, and reservoir pressure. It will be known how the reservoir characteristics based on the driving mechanism from the trend formed. In quantitative method, Drive Index analysis is carried out to determine the drive mechanism that acts on a reservoir. From the results of qualitative and quantitative analysis, it known that the driving mechanism that works on reservoir AB are combination drive, which is a combination of depletion drive and weak water drive. The justification for the weak water drive in reservoir AB is due to the RF (recovery factor) at the end of production only reached 15.2%, which means there is still 84.8% remaining oil reserves in reservoir AB. Reservoir AB is located in North West Java Basin, member of the Lower Cibulakan Formation, based on the characteristics of the lithological correlation with the South Sumatra Basin. Reservoir AB is included in the equivalent of the Talangakar Formation. From fossil analysis, it known that the Talangakar Formation aged lower Miocene, and from the coring analysis this formation is deposited in transitional environment as evidenced by interlude shale, sandstone and limestone with inserts of marl, siltstone, and coal. The Talangakar Formation is very important formation in the North West Java Basin because it acts as source rock, reservoir rock, and cap rock. Keywords: Drive Mechanism; Talangakar Formation; North West Java Basin
PETROLOGI DAN STRUKTUR GEOLOGI DAERAH PANAS BUMI CITANDO BANTEN Anggi Anggi Deliana S; Hari Wiki Utama
JOURNAL ONLINE OF PHYSICS Vol. 6 No. 1 (2020): JOP (Journal Online of Physics) Vol 6 No 1
Publisher : Prodi Fisika FST UNJA

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.22437/jop.v6i1.10613

Abstract

The appearance geothermal features on the Citando Banten is a indication of geothermal system. Hot spring manifestation on Miocene Cimapang sandstone and Pliocene andesite intrusion become guideline, there is diffirence of geothermal system. For understanding its needed study of petrology and structural geology. Petrology study with petrography analysis for some sample on the appearance of geothermal manifestation and also some sample on the volcanic complex, its Southeastern of geothermal features. Structural geology is role of important for knowing of control fracture characterics of appearance geothermal features of the Citando Area. Petrography of andesit is composed of andesine plagioclase, clinopyroxene, hornblende, and groundmass. Its sndesit shallow intrusion has probably the role of heat transfer. Sandstone compiled by quartz, lithic, hornblende, plagioclase as fragment with mud supported, wich alteration intensity is low relative. Product of volcanic complex features is andesitic lava, its composed of andesine plagioclase, clinopyroxene, hornblende, groundmass with pilotaxitic texture. Tuff and lapilli tuff as pyroclastic product with mineral composition of volcanic glass, lithic fragmen, and quartz.the presence of volcanic rock as a indication there is strato volcanic complex near to appearance of geothermal manifestation. Structural geology between of sinistral fault which is orientation North-Northeastern - South-Southeastern as major fault the directly related to appearance geothermal manifestation and also its recorded of volcanic complex, cutting thrust fault which Western - Eastern direction relatively, dextral fault as young fault which is Northwestern - Southeastern has cutting major fault. The appearance of geothermal manifestation on manjor fault is indication its facilitating or pathway of surface gothermal features, and also cutting of Cimapang sandstone-claystone anticline and assured as younger fault the volcanic complex formation. The features of petrology and structural geology, the appearance geothermal manifestation have connection to volcanic complex part of Southeastern geothermal manifestation.
PALEOVOLCANIC KARING RECONSTRUCTION IN THE MERANGIN JAMBI UNESCO GLOBAL GEOPARK TERRITORY BASED ON PETROLOGICAL AND GEOCHEMICAL APPROACH hari wiki utama; Sutarto Sutarto; Asmoro Widagdo; Eko Wahyudi
JOURNAL ONLINE OF PHYSICS Vol. 9 No. 1 (2023): JOP (Journal Online of Physics) Vol 9 No 1
Publisher : Prodi Fisika FST UNJA

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.22437/jop.v9i1.28588

Abstract

The presence of lava and pyroclastic sequences in the Karing River on the Merangin Jambi UNESCO Global Geopark territory provides information about the existence of ancient volcanoes. The absence of confirmed rock formations from the distribution of volcanic rock products that have been mapped nationally and also the shape of this ancient volcanic body, is an important reason for this research to be carried out using a petrological approach using petrography and XRF gochemical methods. Petrographic analysis is an appropriate method to determine the mineralogy consist, textures and particular textures, rock structures that are confirmed from field data. Meanwhile, a geochemical approach is used to determine rock oxide compounds. This method aims to reconstruct the shape and type of volcanoes. Research data shows that there are four lava sequences, with Sequence 1 having an entablature structure, Sequence 2 and Sequence 3 having a flow structure, and Sequence 4 having a vesicular-flow structure. The petrography results show that Sequence 1 and Sequence 2 are composed of phenocrysts and microliths of plagioclase, olivine, clinopyroxene, orthopyroxene. Meanwhile, in Sequence 3, hornblende is present, and in Sequence 4, the mineral olivine is absent. The results of geochemical analysis from the four lava sequences are in basalt rocks with 40%-50% Silica content, Calk-alkali basalt magma series, petrogenesis interpreted from the convergence of oceanic subduction beneath continent. The pyroclastic rocks found at the bottom of the lava sequence are evidence of the stratigraphic structure that makes up a volcano originating from the Karing Paleovolcanic, while the pyroclastic rocks found at the top of the lava sequence are believed to originate from other ancient volcanic eruptions. With the stratigraphy composed of lava and pyroclastic sequences, it can be concluded that this ancient volcano is a strato volcano type which is relatively sloping and almost resembles a shield volcano.
PETROGRAPHY OF PYROCLASTIC ROCK MOUNT MASURAI JAMBI PROVINCE Kirana, Febiyora Chandra; Nuriil Tadersi, Risnaliyah; Hasbullah, Andrea; Siregar, Anggi Deliana; Ritonga, D.M Magdalena; Utama, Hari Wiki; Misnawati, Misnawati
JOURNAL ONLINE OF PHYSICS Vol. 10 No. 1 (2024): JOP (Journal Online of Physics) Vol 10 No 1
Publisher : Prodi Fisika FST UNJA

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.22437/jop.v10i1.38349

Abstract

The magmatic arc of Sumatra Island, which is indicated by the presence of the Barisan Mountains zone on the west side of Sumatra Island with a general direction northwest - southeast, makes Mount Masurai, which is administratively in Merangin Regency, Jambi Province, become one of the volcanoes on Sumatra Island. Geographically, the peak of Mount Masurai is located at coordinates 101o 51' 28.60" E and 2o 30' 09.19" S with an elevation 2915 masl. The eruption period of Mount Masurai is estimated to have occurred twice during the eruption period. Based on the lack of information about volcanoes, this research was conducted to determine the characteristic and distribution of pyroclastics from Mount Masurai. In the area around Mount Masurai, remnants of volcanic eruptions were found, in the form of pyroclastic flows and falls. From data collection based on the results of geological mapping and petrographic analysis, pyroclastic rocks were found in the area around Mount Masurai with lithology in the form of Andesite Breccia, Laharic Breccia Pumice Breccia, Lapilli stone and Tuff. This is reinforced by the results of petrographic analysis of rock samples which are dominated by the presence of a glass
IDENTIFIKASI LITOLOGI DAN KONDISI BAWAH PERMUKAAN GEDUNG B FAKULTAS SAINS DAN TEKNOLOGI UNIVERSITAS JAMBI MENGGUNAKAN METODE RESISTIVITAS KONFIGURASI WENNER DAN SCHLUMBERGER Arafat, Rakhmatul; Utama, Hari Wiki; Amin, Sarwo Sucitra
JOURNAL ONLINE OF PHYSICS Vol. 11 No. 1 (2025): JOP (Journal Online of Physics) Vol 11 No 1
Publisher : Prodi Fisika FST UNJA

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.22437/jop.v11i1.49987

Abstract

Pembangunan infrastruktur yang masif di Universitas Jambi, khususnya pada Gedung B Fakultas Sains dan Teknologi (FST), memerlukan informasi kondisi litologi bawah permukaan untuk mendukung perencanaan yang tepat serta mitigasi risiko geoteknik di masa mendatang. Penelitian ini bertujuan mengidentifikasi kondisi litologi bawah permukaan di area Gedung B FST yang secara geologi berada di atas Formasi Muara Enim. Metode geolistrik-resistivitas digunakan dengan dua konfigurasi, yaitu Wenner dan Schlumberger. Pengukuran dilakukan pada dua lintasan sepanjang 240 meter. Hasil inversi menunjukkan bahwa konfigurasi Wenner mampu memetakan kondisi bawah permukaan hingga kedalaman ±20 meter, sedangkan konfigurasi Schlumberger mencapai kedalaman 145–199 meter, sehingga lebih unggul dalam resolusi vertikal. Kedua konfigurasi mengidentifikasi urutan litologi yang relatif serupa, yakni lapisan tanah penutup atau material timbunan di bagian atas (310–3485 Ω·m), diikuti oleh batuan sedimen Formasi Muara Enim. Batupasir menunjukkan nilai resistivitas sedang (25–688 Ω·m), sementara batulempung memiliki resistivitas rendah (1,59–15,9 Ω·m). Interpretasi litologi bawah permukaan ini penting sebagai dasar perencanaan desain pondasi, evaluasi stabilitas struktural, serta potensi identifikasi sumber air bersih untuk mendukung pengembangan infrastruktur di lingkungan Fakultas Sains dan Teknologi Universitas Jambi