p-Index From 2020 - 2025
8.235
P-Index
This Author published in this journals
All Journal Prosiding Seminar Nasional Sains Dan Teknologi Fakultas Teknik Jurnal Simantec Jurnal Teknologi Informasi dan Ilmu Komputer AT TA´DIB Prosiding Semnastek Journal of Animation & Games Studies Fountain of Informatics Journal Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi) JTT (Jurnal Teknologi Terpadu) SemanTIK : Teknik Informasi Kinetik: Game Technology, Information System, Computer Network, Computing, Electronics, and Control ELSE (Elementary School Education Journal) : Jurnal Pendidikan dan Pembelajaran Sekolah Dasar J I M P - Jurnal Informatika Merdeka Pasuruan at-tamkin: Jurnal Pengabdian kepada Masyarakat JUSIM (Jurnal Sistem Informasi Musirawas) METIK JURNAL IJITEE (International Journal of Information Technology and Electrical Engineering) BERNAS: Jurnal Pengabdian Kepada Masyarakat Jurnal FASILKOM (teknologi inFormASi dan ILmu KOMputer) Jurnal Tika Jurnal Abdimas ADPI Sosial Dan Humaniora Teknik: Jurnal Ilmu Teknik dan Informatika Abdiformatika: Jurnal Pengabdian Masyarakat Informatika Jurnal Ilmiah IT CIDA : Diseminasi Teknologi Informasi Prosiding Seminar Nasional Sisfotek (Sistem Informasi dan Teknologi Informasi) PELS (Procedia of Engineering and Life Science) Prosiding Seminar Nasional Hasil-hasil Penelitian dan Pengabdian Pada Masyarakat JOINCS (Journal of Informatics, Network, and Computer Science) Biner : Jurnal Ilmiah Informatika dan Komputer Abadi: Jurnal Ahmad Dahlan Mengabdi Prosiding Seminar Nasional Rekayasa dan Teknologi (TAU SNAR- TEK) Jurnal Informatika Polinema (JIP) Prosiding Seminar Nasional Unimus Jurnal Pendidikan Matematika Universitas Lampung Journal of Information System and Application Development Hipotenusa: Journal of Mathematical Society Geosfera Indonesia
Claim Missing Document
Check
Articles

Analisis Sentimen Pandangan Masyarakat Terhadap Piala Dunia U-17 Menggunakan Teknik Teks Mining Aziz Musthafa; Dihin Muriyatmoko; R Muh Yusril Harmawan
Prosiding SISFOTEK Vol 8 No 1 (2024): SISFOTEK VIII 2024
Publisher : Ikatan Ahli Informatika Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

One of the most loved sports by people around the world is football. Indonesia is one of the countries with the most football fans in the world. Indonesia is one of the countries with the largest number of football fans in the world, with 77% of the Indonesian population interested in football. Based on research analysis, Indonesia was selected to host the 2023 U-17 World Cup. The decision was made after the International Football Federation (FIFA) granted hosting rights. Specifically to the President of the Indonesian Football Federation (PSSI). This research aims to classify public opinion related to the event from twitter social media into 3 class categories, namely neutral, positive and negative. In this research, the methods used are Naïve Bayes algorithm and Support Vector Machine (SVM) algorithm. The classification results show that the naïve bayes method has an accuracy result of 0.73 while for the Support Vector Machine method the accuracy value obtained is 0.84 which shows that Support Vector Machine has better accuracy than Naive Bayes. Based on the model classification, positive sentiment has the highest percentage of other classes with a percentage of 35%, followed by negative sentiment with a percentage of 31% and neutral sentiment is the minority class with a percentage of 33%. From the percentage obtained, it can be concluded that the public has a positive view of the organisation of the U-17 world cup in Indonesia. It is hoped that in the future this research can be improved and implemented better with additional algorithm methods or with a larger amount of data.
Penerapan Pola Arsitektur Model-View-ViewModel pada Aplikasi Pembelajaran Shorof Berbasis Mobile Havidz Muhammad Iqbal; Oddy Virgantara Putra; Dihin Muriyatmoko
Prosiding SISFOTEK Vol 8 No 1 (2024): SISFOTEK VIII 2024
Publisher : Ikatan Ahli Informatika Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

This research aims to develop an Android-based Basic Shorof learning application using Model-View-ViewModel (MVVM) architecture pattern. The background of this research focuses on the difficulties faced by Non KMI students at Darussalam Gontor University in understanding Shorof material, which is a major challenge in Arabic language learning. Many students have difficulty in understanding the basic concepts of Shorof, which is an important component in the overall mastery of the Arabic language. This research method includes data collection through questionnaires distributed to students. The purpose of this data collection was to identify the difficulties faced by students in learning Shorof. Analysis of the questionnaires showed that many students have difficulties in understanding the basic concepts of Shorof. This finding became the basis for the development of a learning application that is easy for students to use. The developed application uses MVVM approach to separate the business logic from the user interface. This approach facilitates future development, testing, and maintenance of the application. The features of this application include learning modules, quizzes, and Arabic vocabulary designed to strengthen students' understanding of Shorof material. Application testing involved a number of students as respondents to measure the effectiveness and efficiency of the application in improving their understanding of Shorof material. The test results showed that students experienced an increase in understanding after using this application. In conclusion, the application of MVVM architecture pattern in the development of Basic Shorof learning application can improve students' understanding effectively. This research is expected to have a positive impact on the development of educational applications in the future. Thus, this application is useful not only for students of Darussalam Gontor University, but also for the development of Arabic learning methods more broadly in various educational institutions.
Implementasi MVVM Dan Framework Jetpack Compose Pada Aplikasi Hukum Berbasis Android Aziz Musthafa; Dihin Muriyatmoko; Abdullah Hikmatyar Priandika
Prosiding SISFOTEK Vol 8 No 1 (2024): SISFOTEK VIII 2024
Publisher : Ikatan Ahli Informatika Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

This research discusses the development of Android-based legal applications using Model-View-ViewModel (MVVM) architecture and Jetpack Compose framework. The purpose of this research is to improve the access and understanding of the Indonesian people to legal aid through an efficient and user-friendly mobile application. The research method used is Software Development Life Cycle (SDLC) with a waterfall model that includes the stages of needs analysis, design, implementation, testing, and maintenance. Data was collected through a questionnaire distributed to 107 respondents aged 17-40 years to measure their understanding of the law and access to legal aid. The results of the analysis showed that 67% of the respondents knew how to get legal aid, but did not know the details of how. The developed app has several key features, such as a list of laws and regulations, AI Q&A, and lawyer consultation. The implementation of Jetpack Compose on the login, register, home, chatbot, regulations, and regulation details pages shows efficiency and ease in developing an interactive and responsive user interface. Application testing is carried out through verification by media experts, application users, and black box tests. The test results show that the application functions properly and meets user needs. The conclusion of this research is that the use of MVVM architecture and Jetpack Compose can speed up the development process and facilitate the maintenance of Android-based legal applications. This application is expected to provide practical and effective solutions in obtaining legal assistance and increasing legal understanding among the people of Indonesia.
Pengembangan website Monitoring Stok Barang Supplier dengan Sistem Rekomendasi menggunakan metode Collaborative Filtering pada Ud. Pekanbaru Jaya Oddy Virgantara Putra; Dihin Muriyatmoko; Harris Abdillah Faqih
Prosiding SISFOTEK Vol 8 No 1 (2024): SISFOTEK VIII 2024
Publisher : Ikatan Ahli Informatika Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

Pekanbaru Jaya, a goods distribution store, frequently faces challenges in monitoring supplier stock and ordering goods, leading to stockouts and operational inefficiencies. This study aims to design and implement an effective and efficient stock monitoring system using the Collaborative Filtering method. This method is chosen for its ability to predict items that users might like based on the opinions of other users, providing accurate recommendations even with limited content information. The system will also employ the Waterfall model in its development, ensuring that each development phase is conducted in a structured and well-documented manner. The implementation of this system is expected to assist UD. Pekanbaru Jaya in managing assets and inventory, ensuring sufficient stock availability, reducing the risk of stockouts, and optimizing resource utilization. The results of this study demonstrate that the developed system can enhance efficiency in stock management and provide a better shopping experience for customers through the online store.
Klasifikasi Profil Kelulusan Nilai AKPAM Dengan Metode Decision Tree C4.5 Muriyatmoko, Dihin; Musthafa, Aziz ,; Wijaya, Muqoddam Husni
Prosiding Semnastek PROSIDING SEMNASTEK 2024
Publisher : Universitas Muhammadiyah Jakarta

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

Universitas Darussalam (UNIDA) Gontor, yang dikelola oleh Pondok Modern Darussalam Gontor, menyajikan pendidikan universitas dengan pendekatan unik. Mahasiswa UNIDA, berinteraksi intensif dengan dosen dalam suasana pesantren, di mana nilai-nilai keilmuan ditanamkan 24 jam sehari. UNIDA Gontor juga menawarkan berbagai organisasi dan kegiatan kemahasiswaan, menciptakan lingkungan dinamis. Angka Kumulatif Penunjang Akademik (AKPAM) digunakan sebagai indikator kinerja mahasiswa, tetapi beberapa siswa mengalami kesulitan mencapai batas kelulusan AKPAM. Pada tahun ajaran 2022-2023, sekitar 700 siswa di semester genap dan 379 siswa di semester ganjil tidak memenuhi syarat AKPAM minimal. Karena tidak ada model kelulusan mahasiswa AKPAM berbasis data, penelitian ini menerapkan metode data mining, terutama Decision Tree C4.5. Penelitian ini bertujuan memudahkan mahasiswa mencapai nilai AKPAM dengan saran kriteria kinerja. Dengan menggunakan Decision Tree C4.5, penelitian melibatkan pengumpulan data, preprocessing data, pembagian data, pembuatan model, uji coba, dan validasi. Dengan Cross Validation sebagai metode pengujian, penelitian mencapai akurasi 99.58%. Dengan proses yang melibatkan preprocessing, split data, pemodelan, dan validasi menggunakan Cross Validation, penelitian ini berhasil mengimplementasikan seluruh proses dari pengumpulan data hingga pembuatan model. Hasil akurasi tinggi membuat model ini dapat diandalkan untuk prediksi atau pengambilan keputusan berdasarkan data yang diolah.Kata kunci: AKPAM,UNIDA, Data Mining, Decision Tree C4.5
KLASIFIKASI POSE MANUSIA BERBASIS POINT CLOUD MENGGUNAKAN DEEP LEARNING Siddiq, Muhammad; Muriyatmoko, Dihin; Putra, Oddy Virgantara
Prosiding Semnastek PROSIDING SEMNASTEK 2024
Publisher : Universitas Muhammadiyah Jakarta

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

Dengan menggunakan teknologi untuk mengklasifikasikan pose manusia, pemantauan pekerjaan yang berisiko cedera dapat dilakukan dengan lebih aman, sejalan dengan prinsip mempertahankan keamanan dan privasi yang merupakan bagian dari prinsip-prinsip syariah dalam menjaga jiwa. Namun, dalam pengambilan sampel data tubuh manusia, terdapat risiko pengambilan data aurat yang melanggar prinsip privasi. Melalui penggunaan data point cloud dari LiDAR, bagian tubuh yang menjadi aurat dapat tersamarkan dan menjaga privasi. Meskipun demikian, pose manusia yang dihasilkan belum terlihat dengan jelas. Oleh karena itu, tujuan dari penelitian yang dilakukan ini adalah untuk membuat model klasifikasi pose manusia berbasis voxel point cloud dengan menggunakan deep learning agar dapat mengetahui pose manusia. Dalam penelitian ini, model klasifikasi pose manusia berbasis voxel point cloud dengan menggunakan pendekatan deep learning Conv3D telah berhasil dikembangkan dengan akurasi sebesar 95.76%.Kata kunci: Human pose classification; LiDAR; Point cloud data; Deep learning
Analisis Sentimen Pengguna Media Sosial Twitter Tentang Gelaran Piala Asia Qatar dengan Metode Naive Bayes Musthafa, Aziz; Muriyatmoko, Dihin; Dzulfikar As'ad, Ahmad Fa'iq
Jurnal Ilmiah IT CIDA Vol 10 No 2: Desember 2024
Publisher : STMIK Amikom Surakarta

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.55635/jic.v10i2.226

Abstract

Di era digital dan kemajuan teknologi, media sosial telah menjadi platform penting bagi pengguna untuk berbagi pemikiran, pendapat,  dan perasaan tentang berbagai topik, termasuk acara olahraga seperti Piala Asia. Oleh karena itu, penting untuk memahami pandangan dan opini masyarakat dengan menganalisis data media sosial. Analisis ini mengklasifikasikan keseluruhan menjadi tiga kategori: positif, negatif, dan netral berdasarkan kelas yang telah ditentukan. Teknik analisis data ini menggunakan CRISP-DM, sebuah proses penambangan data standar industri, dimulai dari busineess understanding, data understanding, data preparation, modeling, evaluation, dan deployment. Fitur dipilih menggunakan teknik Query Expansion Ranking sehingga semua data dikumpulkan berdasarkan kelas tertentu. Jumlah fitur yang dibutuhkan untuk meningkatkan akurasi. Tahap selanjutnya yaitu penerapan teknik algoritma klasifikasi yaitu teknik Naive Bayes. Hasil klasifikasi menggunakan metode Naive Bayes pada penelitian ini memiliki tingkat akurasi sebesar 91%. Setelah proses validasi dengan K-fold cross validation, nilai akurasi yang didapat pada Naïve Bayes adalah 91%. Berdasarkan hasil klasifikasi model, sentimen netral mendominasi dengan hasil akurasi sebesar 64.1%, untuk sentimen positif memiliki hasil akurasi sebesar 33,6% dan pada sentimen negatif hasil akurasi yang dimiliki sebesar 2,3%. Dari hasil akurasi tersebut menunjukkan bahwa banyak data yang berisi kenetralan terhadap gelaran Piala Asia 2024 di Qatar.
Deteksi Berita Salah Pada Pemilihan Umum Presiden 2024 Menggunakan Metode Naïve Bayes Berbasis Website Musthafa, Aziz; Muriyatmoko, Dihin; Taufiqurrahman; Kamal Sholihin, Surya
JURNAL FASILKOM Vol 14 No 2 (2024): Jurnal FASILKOM (teknologi inFormASi dan ILmu KOMputer)
Publisher : Unversitas Muhammadiyah Riau

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.37859/jf.v14i2.7110

Abstract

Mendekati masa pemilihan umum, banyak berita salah yang muncul ditengah-tengah masyarakat menggiring opini masyarakat agar memilih calon presiden yang didukung pembuat berita salah. Diawal tahun 2024, Kementerian Komunikasi dan Informasi telah mengidentifikasi total 203 isu hoax pemilu yang tersebar di berbagai platform berita digital. Oleh karena itu membuat masyarakat yang ingin mengikuti berita perkembangan pemilu menjadi ragu. Tujuan dari penelitian ini membuat aplikasi pembelajaran mesin yang dapat mengklasifikasikan berita benar atau salah secara otomatis dan mudah. Dalam mengklasifikasikan berita, digunakan teknik Penambangan Teks (Text Mining) yang dapat mengolah data teks atau dokumen untuk mendapatkan informasi yang dibutuhkan. Metode yang digunakan yaitu klasifikasi Naïve Bayes. Data yang digunakan berupa berita benar dan berita salah dari situs Turn Back Hoax oleh MAFINDO (Masyarakat Anti Fitnah Indonesia) yang menyediakan sumber berita terverifikasi benar dan telah melabeli berita salah yang beredar di masyarakat. Implementasi menggunakan aplikasi berbasis website untuk klasifikasi berita Pemilihan Umum. Hasil klasifikasi dari website dengan menggunakan metode klasifikasi Naïve Bayes mendapatkan hasil evaluasi akurasi yang baik, yaitu sebesar 91% tingkat akurasi klasifikasinya. Berdasarkan hasil pengujian tersebut, diharapkan hasil penelitian ini dapat memberikan sumbangan bagi literasi digital masyarakat mengenai kearuratan berita pemilu
Penerapan Teknologi Augmented Reality pada Media Pembelajaran Bahasa Arab: Durus Al-Lughah Jilid 1 Fauzan, Ady; Muriyatmoko, Dihin; Utama, Shoffin Nahwa
ELSE (Elementary School Education Journal) : Jurnal Pendidikan dan Pembelajaran Sekolah Dasar Vol 4 No 1 (2020): FEBRUARI
Publisher : UNIVERSITAS MUHAMMADIYAH SURABAYA

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (1141.344 KB) | DOI: 10.30651/else.v4i1.4379

Abstract

Abstrak: Saat ini penggunaan teknologi telah banyak dikembangkan sebagai media pembelajaran diberbagai lembaga pendidikan. Sebagai Universitas berbasis pesantren yang sehari-hari menggunakan Bahasa Arab, Universitas Darussalam Gontor (UNIDA Gontor) telah memiliki media pembelajaran baik dalam bentuk buku bahasa arab (Durusullughah Al-Arabiyah), dan dalam bentuk aplikasi, diantaranya aplikasi android menggunakan metode terjemahan (bit.ly/tamrinlughah) dan metode langsung (http://bit.ly/duruslughah). Seiring berkembangkan teknologi augmented reality (AR) maka diperlukan sebuah trobosan baru pada media pembelajaran. Penelitian ini bertujuan mengembangkan media pembelajaran Bahasa arab dengan memanfaatkan teknologi AR. Konten diambil dari buku Bahasa Arab Durusullughah Al-Arabiyah karya KH. Imam Zarkasyi dan KH. Imam Syubani sebagai trimurti pendiri Pondok Modern Darussalam Gontor. Media ini berbasis Android dan dibuat menggunakan tools seperti Blender 3D, Corel Draw, dan Unity 3D. Aplikasi ini dapat berjalan pada smartphone berspesifikasi minimal android versi OS 4.0 Jelly Bean, ukuran layar 4 inches, RAM 512 MB, ruang kosong memori minimal 200 MB dan kamera belakang 13 MP. Hasil penelitian dengan teknologi AR ini diharapkan dapat memperkaya media pembelajaran Bahasa arab UNIDA Gontor dan dapat bermanfaat untuk pengembangan media pembelajaran Bahasa arab di lingkungan kampus pesantren maupun masyarakat umum. Untuk pengembangan kedepan bisa memanfaatkan teknologi lain misalnya Virtual Reality dan lain sebagainya. Kata Kunci: Media Pembelajaran, Augmented Reality, Bahasa Arab, Android Abstract: Currently, the use of technology has been widely developed as a medium of learning in various educational institutions. As a pesantren-based university that uses arabic language for daily activities, the University of Darussalam Gontor  (UNIDA Gontor) already has a learning medium in the form of Arabic books (Durusullughah Al-Arabiya), and in the form of applications, including Android applications using the translation method (bit.ly/tamrinlughah ) and direct method (bit.ly/duruslughah ). Along with developing augmented reality (AR) technology, a breakthrough in learning media is desired. This research aims to develop Arabic language learning media by utilising AR technology. Content is taken from the Arabic book Durusullughah Al-Arabiyah by KH. Imam Zarkasyi and KH. Imam Syubani as the founding father of Pondok Modern Darussalam Gontor. This media is based on Android and is made using tools such as Blender 3D, Corel Draw, and Unity 3D. This application can run on a minimum android smartphone specification OS 4.0 Jelly Bean, 4 inches screen size, 512 MB RAM, free memory space of at least 200 MB and a 13 MP rear camera. The results of this research with AR technology are expected to be able to enrich UNIDA Gontor's Arabic language learning media and can be useful for the development of Arabic language learning media in the pesantren-based university environment and for pesantren based university specifically and the public generally. For future development, it can utilise other technologies such as Virtual Reality and others. Keywords: Learning Media, Augmented Reality, Arabic, Android
ANALYSIS OF RAINY DAYS AND RAINFALL TO LANDSLIDE OCCURRENCE USING LOGISTIC REGRESSION IN PONOROGO EAST JAVA Dihin Muriyatmoko; Sisca Mayang Phuspa
Geosfera Indonesia Vol. 3 No. 2 (2018): GEOSFERA INDONESIA
Publisher : Department of Geography Education, University of Jember

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.19184/geosi.v3i2.8230

Abstract

Referred to data of Badan Nasional Penanggulangan Bencana (BNPB) and Kementerian Kesehatan Republik Indonesia (Kemenkes RI), almost landslide occurrence in Ponorogo always starts with high-intensity rain. This research aimed to determine simultaneously correlation and partial assessment impact of rainy days every month and monthly rainfall toward landslide occurrence in Ponorogo using logistic regression. The data collection was conducted through Badan Pusat Statistik (BPS) in the book of Ponorogo Regency in Figure on 2012 to 2016. The existing data shows that in sixty months have been twenty-six times landslides occurrence in Ponorogo districts. The data statistically analyzed in simultaneous proves that contribution of rainy days and rainfall to landslide were included adequate correlation (Nagelkerke R Square = 25.4 % and Cox & Snell R Square = 36.9 %) and in partial test proves that rainy days have significant impact (sig. = 0.024) and rainfall does not significant impact (sig. = 0.291) (α = 0.05) to landslide occurrence in Ponorogo regency. The rainy days per month were abled applied to predict for possible landslide elsewhere. Keywords: rainy days, rainfall, landslide, Ponorogo, logistic regression References Aditian, A., Kubota, T., & Shinohara, Y. (2018). Geomorphology Comparison of GIS-based landslide susceptibility models using frequency ratio , logistic regression , and arti fi cial neural network in a tertiary region of Ambon , Indonesia. Geomorphology Journal, 318, 101–111. https://doi.org/10.1016/j.geomorph.2018.06.006 Agresti, A. (1996). An Introduction to Categorical Data Analysis. Wiley. https://doi.org/10.1002/0470114754 Amri, M. R., Yulianti, G., Yunus, R., Wiguna, S., Adi, A. W., Ichwana, A. N., … Septian, R. T. (2016). Risiko Bencana Indonesia. Jakarta: Badan Nasional Penanggulangan Bencana. Badan Nasional Penanggulangan Bencana. (2018). Data Pantauan Bencana. Retrieved June 21, 2018, from http://geospasial.bnpb.go.id/pantauanbencana/data/index.php Badan Perencanaan Pembangunan Daerah Ponorogo. (2013). Pembangunan Ponorogo Dalam Angka 2013. Ponorogo. Retrieved from https://ponorogokab.bps.go.id/publication/ Badan Perencanaan Pembangunan Daerah Ponorogo. (2014). Pembangunan Ponorogo Dalam Angka 2014. Ponorogo. Retrieved from https://ponorogokab.bps.go.id/publication Badan Pusat Statistik Kabupaten Ponorogo. (2015a). Ponorogo Dalam angka 2015. Ponorogo. Retrieved from https://ponorogokab.bps.go.id/publication Badan Pusat Statistik Kabupaten Ponorogo. (2015b). Ponorogo Dalam angka 2017. Ponorogo. Retrieved from https://ponorogokab.bps.go.id/publication Badan Pusat Statistik Kabupaten Ponorogo. (2016). Ponorogo Dalam angka 2016. Ponorogo. Retrieved from https://ponorogokab.bps.go.id/publication Chuang, Y. C., & Shiu, Y. S. (2018). Relationship between landslides and mountain development—Integrating geospatial statistics and a new long-term database. Science of the Total Environment Journal, 622–623, 1265–1276. https://doi.org/10.1016/j.scitotenv.2017.12.039 Chuang, Y., & Shiu, Y. (2018). Science of the Total Environment Relationship between landslides and mountain development — Integrating geospatial statistics and a new long-term database. Science of the Total Environment Journal, 622–623, 1265–1276. https://doi.org/10.1016/j.scitotenv.2017.12.039 Departemen Pekerjaan Umum. Pedoman Penataan Ruang Kawasan Rawan Bencana Longsor, Pub. L. No. 22 /PRT/M/2007, 148 (2007). Indonesia: Menteri Pekerjaan Umum Republik Indonesia. Retrieved from landspatial.bappenas.go.id/komponen/peraturan/the_file/permen22_2007.pdf%0A Hosmer, D. W., & Lemeshow, S. (2005). Multiple Logistic Regression. In Applied Logistic Regression (pp. 31–46). Hoboken, NJ, USA: John Wiley & Sons, Inc. https://doi.org/10.1002/0471722146.ch2 Kementerian Kesehatan Republik Indonesia. (2018). Pusat Krisis Kesehatan Kementerian Kesehatan Republik Indonesia. Retrieved June 11, 2018, from http://pusatkrisis.kemkes.go.id/ Lin, G., Chang, M., Huang, Y., & Ho, J. (2017). Assessment of susceptibility to rainfall-induced landslides using improved self-organizing linear output map , support vector machine , and logistic regression. Engineering Geology Journal, 224(May), 62–74. https://doi.org/10.1016/j.enggeo.2017.05.009 Logar, J., Turk, G., Marsden, P., & Ambrožič, T. (2017). Prediction of rainfall induced landslide movements by artificial neural networks. Journal of Natural Hazards and Earth System Sciences Discussions, (July), 1–18. https://doi.org/10.5194/nhess-2017-253 Paimin, Sukresno, & Pramono, I. B. (2009). Teknik Mitigasi Banjir dan Tanah Longsor. (A. N. Ginting, Ed.). Balikpapan: Tropenbos International Indonesia Programme. Retrieved from www.tropenbos.org Pourghasemi, H. R., & Rahmati, O. (2018). Prediction of the landslide susceptibility: Which algorithm, which precision? Catena Journal, 162(November), 177–192. https://doi.org/10.1016/j.catena.2017.11.022 Reed, P., & Wu, Y. (2013). Journal of Fluency Disorders Logistic regression for risk factor modelling in stuttering research ଝ. Journal of Fluency Disorders, 38(2), 88–101. https://doi.org/10.1016/j.jfludis.2012.09.003 Ubechu, B. O., & Okeke, O. . (2017). Landslide: Causes, Effects and Control. International Journal of Current Multidisciplinary Studies, 3(03), 647–663. Yuniarta, H., Saido, A. P., & Purwana, Y. M. (2015). Kerawanan Bencana Tanah Longsor Kabupaten Ponorogo. Jurnal Matriks Teknik Sipil, 3(1), 194–201. Copyright (c) 2018 Geosfera Indonesia Journal and Department of Geography Education, University of Jember Copyright Notice This work is licensed under a Creative Commons Attribution-Share A like 4.0 International License