Claim Missing Document
Check
Articles

Found 1 Documents
Search
Journal : Indonesian Journal of Electrical Engineering and Computer Science

Word embedding and imbalanced learning impact on Indonesian Quran ontology population Utomo, Fandy Setyo; Purwati, Yuli; Azmi, Mohd Sanusi; Shafira, Lulu; Trinarsih, Nikmah
Indonesian Journal of Electrical Engineering and Computer Science Vol 39, No 1: July 2025
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijeecs.v39.i1.pp603-613

Abstract

This research addresses limitations in Quranic instance classification, exceptionally high dimensionality, lack of semantic relationships in the term frequency-inverse document frequency (TF-IDF) technique, and imbalanced data distribution, which reduce prediction accuracy for minority classes. This study investigates the impact of word embedding and imbalance learning techniques on instance classification frameworks using Indonesian Quran translation and Tafsir datasets to handle previous research limitations. Four classification frameworks were built and evaluated using accuracy and hamming loss metrics. The results show that the synthetic minority oversampling technique (SMOTE) technique, TF-IDF model, and logistic regression classifier provide the best accuracy results of 62.74% and a hamming loss score of 0.3726 on the Quraish Shihab Tafsir dataset. This is better than the performance of previous classifiers backpropagation neural network (BPNN) and support vector machine (SVM) used in the previous framework, with accuracies of 59.91% and 62.26%, respectively. Logistic regression can also provide the best classification results with an accuracy of 67.92% and a hamming loss of 0.3208 using the previous framework. These results are better than the performance of the previous classifiers BPNN and SVM used in the previous framework, with accuracies of 62.26% and 66.98%, respectively. TF-IDF feature extraction outperforms word2vec in instance classification results due to its superior support under limited dataset conditions.
Co-Authors Adiatma, Febriansyah Husni Adiya, Az Zahra Dwi Nur Afit Ajis Solihin Aisha Hukama Setyowati Aji Saeful Aji Septa, Adrian Ajis Solihin, Afit Amar Al Farizi Anas Nur Khafid Anggini, Melisa Anggraeni, Mutia Dwi Anggraini, Nova Anggriani, Epri Azhari Shouni Barkah Azmi, Mohd Sanusi Bagus Adhi Kusuma Baihaqi, Wiga Maulana Balit, Muhamad Naufal Burhanuddin Berlilana Berlilana Berlilana Burhanuddin Balit, Muhamad Naufal Churil Aeni, Agustina Chyntia Raras Ajeng Widiawati Darmono Dedi Purwanto, Dedi Didi Prasetyo Dwi Krisbiantoro, Dwi Dzaky Candy Fahrezy Fadhilah, Siti Nur Filanzi, Shendy Giat Karyono Giat Karyono Hanif Hidayatulloh Hendra Marcos, Hendra hidayatulloh, hanif Ilham, Rifqi Arifin Imam Tahyudin Indriyani, Ria Jamie Mayliana Alyza Kafilla, Princess Iqlima Kusuma, Bagus Adhi Kusuma, Velizha Sandy Lasmedi Afuan Lubna, Zuhriyatul Lukita, Dita Maharani, Titi Safitri Maulana Baihaqi, Wiga Mohd Fairuz Iskandar Othman Mohd Nazrin Muhammad Mohd Sanusi Azmi Muaziz, Imam Muhamad Naufal Burhanuddin Balit Muhtyas Yugi Murtiyoso Murtiyoso Nandang Hermanto Nanna Suryana Nikmah Trinarsih Nugroho, Khabib Adi Nur Cholis Romadhon Octavia, Annisa Suci Prayoga, Fandhi Dhuga Pungkas Subarkah Purbo, Yevi Septiray Purwidiantoro, Moch. Hari Putranto, R. Vitto Mahendra Pyawai, Hero Galuh Ramadhan, Aziz Ramadhan, Rio Fadly Rifqi Arifin Ilham RR. Ella Evrita Hestiandari Rujianto Eko Saputro Safitri Maharani, Titi Sagita, Selvi Samsul Arifin Sarmini - Sarmini Sarmini Sarmini Sekhudin Sekhudin Setiabudi, Rizki Setiawan, Ito Shafira, Lulu Slamet Widodo Sofa, Nur Sri Hartini Subarkah, Pungkas Suryana, Nanna Trinarsih, Nikmah Turino, Turino Utomo, Dadang Wahyu Wahid, Arif Mu'amar Wibisono, Arif Cahyo Wiga Maulana Baihaqi Yuli Purwat Yuli Purwati Yulianto, Koko Edy