Claim Missing Document
Check
Articles

Found 31 Documents
Search

Prediksi Kerusakan Bangunan Pasca Gempa Bumi Menggunakan Metode Deep Neural Network Fakhrurrozi, Fakhrurrozi; Ratmana, Danny Oka; Winarsih, Nurul Anisa Sri; Saraswati, Galuh Wilujeng; Rohman, Muhammad Syaifur; Saputra, Filmada Ocky; Pramunendar, Ricardus Anggi; Shidik, Guruh Fajar
Jurnal Teknologi Sistem Informasi dan Aplikasi Vol. 7 No. 1 (2024): Jurnal Teknologi Sistem Informasi dan Aplikasi
Publisher : Program Studi Teknik Informatika Universitas Pamulang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.32493/jtsi.v7i1.37181

Abstract

Addressing the challenge of predicting earthquake-induced building damage, this study proposes the innovative use of Deep Neural Networks (DNN) as a solution. Focusing on optimizing predictive models, the research evaluates the effectiveness of various optimizers - ADAM, SGD, RMSprop, and Adagrad - coupled with adjustments in the learning rate to determine the most efficient configuration. The experiment was conducted to compare the performance of each optimizer in predicting post-earthquake building damage, a critical issue in disaster mitigation. The results demonstrate that ADAM significantly outperforms other optimizers, achieving the highest accuracy of up to 90.50% at a learning rate of 0.001, with RMSprop as its closest competitor. While SGD and Adagrad yielded lower accuracies, SGD showed improvement with higher learning rates. The variance analysis confirmed that the choice of optimizer significantly impacts model performance, with the p-value indicating strong statistical significance for optimizers (1.23E-09), whereas the learning rate had no significant impact (p-value 0.56098964). These findings underline the importance of selecting the appropriate optimizer to enhance the accuracy of DNN models for building damage prediction, a crucial aspect in emergency response planning and earthquake disaster mitigation efforts. This research contributes significantly to the development of more accurate predictive models, which are essential in minimizing the risks of earthquake disasters.
Co-Authors Abdussalam Abdussalam, Abdussalam Affandy Affandy Aisyatul Karima Andrean, Muhammad Niko Andreas Wilson Setiawan Anggraini, Fitria Anhsori, Khusman Astuti, Yani Parti Azzahra, Tarissa Aura Budi Harjo Cahaya Jatmoko Catur Supriyanto Catur Supriyanto Catur Supriyanto Catur Supriyanto Chaerul Umam Chaerul Umam Christy Atika Sari Dewi Pergiwati Dliyauddin, Muhammad Doheir, Mohamed Dwi Eko Waluyo Dwi Puji Prabowo, Dwi Puji Dzaky, Azmi Abiyyu Edi Noersasongko Egia Rosi Subhiyakto, Egia Rosi Eko Hari Rachmawanto Elkaf Rahmawan Pramudya Erlin Dolphina Erna Zuni Astuti Fafaza, Safira Alya Fajrian Nur Adnan Fakhrurrozi Fakhrurrozi, Fakhrurrozi Firmansyah, Rusmal Harun Al Azies Hayu Wikan Kinasih Heru Lestiawan I Ketut Eddy Purnama Ika Pantiawati Islam, Hussain Md Mehedul Junta Zeniarja Kusuma, Edi Jaya Kusumawati, Yupie L. Budi Handoko Lenci Aryani Megantara, Rama Aria Mochamad Hariadi Muhammad Huda, Alam Muhammad Naufal, Muhammad Ningrum, Amanda Prawita Nurmandhani, Ririn Paramita, Cinantya Pergiwati, Dewi Praskatama, Vincentius Pujiono Pujiono Pulung Nurtantio Andono Purwanto Purwanto Putra, Permana Langgeng Wicaksono Ellwid Rafsanjani, Muhammad Ivan Rahadian, Arief Ramadhan Rakhmat Sani Ramadhani, Irfan Wahyu Rastri Prathivi Ratmana, Danny Oka Ricardus Anggi Pramunendar Riri Damayanti Apnena Rohman, Muhammad Syaifur Saputra, Filmada Ocky Saraswati, Galuh Wilujeng Sarker, Md. Kamruzzaman Savicevic, Anamarija Jurcev Shier Nee Saw Sinaga, Daurat Sindhu Rakasiwi Soeleman, M. Arief Sri Winarno Swanny Trikajanti Widyaatmadja Vincent Suhartono Wahyu Adi Nugroho Wellia Shinta Sari Winarsih, Nurul Anisa Sri Yaacob, Noorayisahbe Mohd Yani Parti Astuti Zainal Arifin Hasibuan Zami, Farrikh Al Zul Azri bin Muhamad Noh