Claim Missing Document
Check
Articles

Found 31 Documents
Search

Optimasi Model Extreme Gradient Boosting Dalam Upaya Penentuan Tingkat Risiko Pada Ibu Hamil Berbasis Bayesian Optimization (BOXGB) Kusuma, Edi Jaya; Nurmandhani, Ririn; Aryani, Lenci; Pantiawati, Ika; Shidik, Guruh Fajar
Jurnal Teknologi Informasi dan Ilmu Komputer Vol 12 No 1: Februari 2025
Publisher : Fakultas Ilmu Komputer, Universitas Brawijaya

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.25126/jtiik.2025129001

Abstract

Kehamilan pada ibu hamil memiliki beragam risiko selama prosesnya seperti preeklampsia, diabetes dan hipertensi gestational. Seiring dengan perkembangan teknologi dan pemanfaatan data, implementasi machine learning dalam pengembangan early diagnosis system untuk tingkat risiko kehamilan telah banyak dilakukan. Namun kendala dalam penerapan machine learning adalah sulitnya menemukan konfigurasi parameter yang tepat agar model machine learning mampu memberikan akurasi prediksi yang mumpuni. Pada penelitian ini diusulkan metode optimasi berbasis Bayesian untuk mengoptimalisasikan hyper-parameter dari model Decision Tree (DT) dan Extreme Gradient Boosting (XGB). Kedua model teroptimasi tersebut dilatih dan diuji dengan menggunakan data risiko kehamilan yang diperoleh dari hasil pengukuran medis pada ibu hamil. Dari hasil evaluasi diketahui terdapat pengaruh jumlah iterasi pada Bayesian Optimization (BO). Implementasi BO pada model Decision Tree (BODT) menunjukkan adanya sedikit peningkatan nilai performa dibandingan dengan penelitian sebelumnya. Sementara itu, capaian performa tertinggi diperoleh oleh kombinasi model XGB dan Bayesian (BOXGB) dimana capaian nilai akurasi pada model BOXGB yaitu 87% diikuti dengan nilai rata-rata presisi, recall, dan F1-score masing-masing sebesar 88%, 87%, dan 88%. Secara keseluruhan implementasi Bayesian Optimization mampu memberikan setelan hyper-parameter yang dapat meningkatkan kemampuan model machine learning khususnya dalam memprediksi tingkat risiko kehamilan pada ibu hamil berdasarkan data pengukuran klinis.   Abstract During pregnancy process there are various risks such as preeclampsia, gestational diabetes and gestational hypertension. Along with the developments in technology as well as data science, the implementation of machine learning in early diagnosis system for pregnancy risk levels prediction has been widely carried out. However, there is a challenge in implementing machine learning, which is find the suitable yet effective parameter configuration in training machine learning model to provides better prediction accuracy. This research proposes a Bayesian-based Optimization (BO) method to tune up the hyper-parameters of Decision Tree (DT) and Extreme Gradient Boosting (XGB) models. These two optimized models were trained and tested using maternal risk dataset obtained from the clinical-based measurement on pregnant woman. From the evaluation result, it can be found that the number of iterations has high influence on the BO performance. The implementation of BO toward DT model has slight increase in performance result compared to the previous research. Meanwhile, the highest performance result achieved by the combination of BO and XGB (BOXGB) model where the proposed model reaches 87% of accuracy, followed by average value of precision, recall, and F1-score of 88%, 87%, and 88%, respectively. Overall, the implementation of BO is able to direct the hyper-parameter configuration which improves the machine learning performance especially in predicting maternal risk level based on clinical-based measurement data.
Edukasi dan Sosialisasi Aplikasi Berbasis Mobile untuk Deteksi Dini Penyakit Kulit di STIKES Telogorejo Semarang Supriyanto, Catur; Paramita, Cinantya; Subhiyakto, Egia Rosi; Astuti, Yani Parti; Setiawan, Andreas Wilson; Rahadian, Arief; Shidik, Guruh Fajar; Widyaatmadja, Swanny Trikajanti
ABDIMASKU : JURNAL PENGABDIAN MASYARAKAT Vol 8, No 2 (2025): MEI 2025
Publisher : LPPM UNIVERSITAS DIAN NUSWANTORO

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.62411/ja.v8i2.3005

Abstract

Aplikasi berbasis mobile untuk deteksi dini penyakit kulit memiliki potensi besar dalam meningkatkan kesadaran dan pemahaman masyarakat terhadap kesehatan kulit. Program pengabdian ini bertujuan untuk memberikan edukasi dan sosialisasi terkait pemanfaatan teknologi kecerdasan buatan dalam deteksi dini penyakit kulit kepada mahasiswa dan tenaga kesehatan di STIKES Telogorejo Semarang. Kegiatan ini meliputi pelatihan penggunaan aplikasi, pemahaman dasar tentang teknologi kecerdasan buatan dalam analisis citra medis, serta diskusi interaktif mengenai pentingnya deteksi dini dalam pencegahan penyakit kulit. Metode yang digunakan mencakup presentasi, demonstrasi langsung, serta sesi praktik dengan studi kasus nyata. Hasil dari kegiatan ini menunjukkan peningkatan pemahaman peserta mengenai teknologi deteksi penyakit kulit berbasis AI, serta meningkatnya minat dalam mengadopsi teknologi digital dalam bidang kesehatan. Selain itu, peserta juga memberikan umpan balik positif terkait kemudahan penggunaan dan manfaat aplikasi dalam mendukung diagnosis awal. Kesimpulannya, edukasi dan sosialisasi ini berhasil meningkatkan literasi digital di bidang kesehatan serta mendorong pemanfaatan teknologi dalam layanan medis. Ke depan, pengembangan aplikasi lebih lanjut dan implementasi di fasilitas kesehatan diharapkan dapat semakin meningkatkan kualitas layanan kesehatan berbasis teknologi
Deep Learning-Based Eye Disorder Classification: A K-Fold Evaluation of EfficientNetB and VGG16 Models Paramita, Cinantya; Rakasiwi, Sindhu; Andono, Pulung Nurtantio; Shidik, Guruh Fajar; Shier Nee Saw; Rafsanjani, Muhammad Ivan
Scientific Journal of Informatics Vol. 12 No. 3: August 2025
Publisher : Universitas Negeri Semarang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.15294/sji.v12i3.26257

Abstract

Purpose: The study evaluates EfficientNetB3 and VGG16 deep learning architectures for image classification, focusing on stability, accuracy, and interpretability. It uses Gradient-weighted Class Activation Mapping to improve transparency and robustness. The research aims to create reliable AI-based diagnostic tools. Methods: The study used a dataset of 4,217 color retinal fundus images divided into four classes: cataract, diabetic retinopathy, glaucoma, and normal. The dataset was divided into 70% for training, 10% for validation, and 20% for testing. The researchers used a transfer learning approach with EfficientNetB3 and VGG16 models, pretrained on ImageNet. Real-time augmentation was applied to prevent overfitting and improve generalization. The models were compiled with the Adam optimizer and trained with categorical cross-entropy loss. Early stopping was implemented to allocate computational resources efficiently and reduce overfitting. A learning rate scheduler (ReduceLROnPlateau) was added to adjust the learning rate if no significant improvement was made concerning validation loss. EfficientNetB3 was more efficient in model size, possessing only 12 million parameters compared to VGG16's 138 million, making it suitable for resource-constrained mobile or embedded systems. The final evaluation was done on the held-out test set. Result: The EfficientNetB3 architecture outperforms VGG16 in classification accuracy and loss value stability, with an average accuracy of 93%. It also exhibits better transparency and predicted accuracy, making it a reliable model for medical image categorization. Novelty: This work introduces a novel framework integrating EfficientNetB3 architecture, stratified cross-valuation, L2 regularization, and Grad-CAM-based interpretability, focusing on openness and explainability in model evaluation.
Improved Chaotic Image Encryption on Grayscale Colorspace Using Elliptic Curves and 3D Lorenz System Sinaga, Daurat; Jatmoko, Cahaya; Astuti, Erna Zuni; Rachmawanto, Eko Hari; Abdussalam, Abdussalam; Pramudya, Elkaf Rahmawan; Shidik, Guruh Fajar; Andono, Pulung Nurtantio; Doheir, Mohamed
Kinetik: Game Technology, Information System, Computer Network, Computing, Electronics, and Control Vol. 10, No. 3, August 2025
Publisher : Universitas Muhammadiyah Malang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.22219/kinetik.v10i3.2251

Abstract

Digital data, especially visual content, faces significant security challenges due to its susceptibility to eavesdropping, manipulation, and theft in the modern digital landscape. One effective solution to address these issues is the use of encryption techniques, such as image encryption algorithms, that ensure the confidentiality, integrity, and authenticity of digital visual content. This study addresses these concerns by introducing an advanced image encryption method that combines Elliptic Curve Cryptography (ECC) with the 3D Lorenz chaotic system to enhance both security and efficiency. The method employs pixel permutation, ECC-based encryption, and diffusion using pseudo-random numbers generated by the Lorenz 3D system. The results show superior performance, with an MSE of 3032 and a PSNR of 8.87 dB, as well as UACI and NPCR values of 33.34% and 99.64%, respectively, indicating strong resilience to pixel intensity changes. During testing, the approach demonstrated robustness, allowing only the correct key to decrypt images accurately, while incorrect or modified keys led to distorted outputs, ensuring encryption reliability. Future work could explore extending the method to color images, optimizing processing for larger datasets, and incorporating additional chaotic systems to further fortify encryption strength.
Optimized Visualization of Digital Image Steganography using Least Significant Bits and AES for Secret Key Encryption Jatmoko, Cahaya; Sinaga, Daurat; Lestiawan, Heru; Astuti, Erna Zuni; Sari, Christy Atika; Shidik, Guruh Fajar; Andono, Pulung Nurtantio; Yaacob, Noorayisahbe Mohd
Kinetik: Game Technology, Information System, Computer Network, Computing, Electronics, and Control Vol. 10, No. 3, August 2025
Publisher : Universitas Muhammadiyah Malang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.22219/kinetik.v10i3.2252

Abstract

Data hiding is a technique used to embed secret information into a cover medium, such as an image, audio, or video, with minimal distortion, ensuring that the hidden data remains imperceptible to an observer. The key challenge lies in embedding secret information securely while maintaining the original quality of the host medium. In image-based data hiding, this often means ensuring the hidden data cannot be easily detected or extracted while still preserving the visual integrity of the host image. To overcome this, we propose a combination of AES (Advanced Encryption Standard) encryption and Least Significant Bit (LSB) steganography. AES encryption is used to protect the secret images, while the LSB technique is applied to embed the encrypted images into the host images, ensuring secure data transfer. The dataset includes grayscale 256x256 images, specifically "aerial.jpg," "airplane.jpg," and "boat.jpg" as host images, and "Secret1," "Secret2," and "Secret3" as the encrypted secret images. Evaluation metrics such as Mean Squared Error (MSE), Peak Signal-to-Noise Ratio (PSNR), Unified Average Changing Intensity (UACI), and Number of Pixels Changed Rate (NPCR) were used to assess both the image quality and security of the stego images. The results showed low MSE (0.0012 to 0.0013), high PSNR (58 dB), and consistent UACI and NPCR values, confirming both the preservation of image quality and the effectiveness of encryption for securing the secret data.
A Comparative Analysis of Eight Machine Learning Models for Climate Change Sentiment Analysis Anhsori, Khusman; Shidik, Guruh Fajar
JST (Jurnal Sains dan Teknologi) Vol. 14 No. 2 (2025): July
Publisher : Universitas Pendidikan Ganesha

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.23887/jst-undiksha.v14i2.92672

Abstract

Climate change is the long-term shift in weather patterns from the tropics to the polar regions. This global threat is starting to materialize and is putting pressure on many industries. This study aims to test and compare the performance of eight machine learning models in classifying sentiment related to climate change to find the most accurate and effective model. Thousands of people share their thoughts daily through tweets on the popular microblogging platform Twitter (X). Twitter (X) is a fantastic source for information about public opinion and perceived risks of problems. One of the hot topics being discussed on Twitter is climate change. Climate change is a well-known and rapidly growing topic of study in sentiment analysis in NLP and text classification. This study used LR, SVM, XGB, DT, RF, NB, KNN, and GBM algorithms to examine the issue of climate change. The dataset was obtained from Kaggle and grouped into four sentiment polarities: "News," "Pro," "Neutral," and "Anti," which were then divided into 80% training data and 20% testing data. SMOTE was used to handle imbalanced data in the sentiment polarity classes. With an accuracy of 73.92%, an F1-Score (Macro) of 0.645, and an F1-Score (Weighed) of 0.727, the SVM-Linear algorithm outperformed all algorithms used in the study. In conclusion, the BERT model provides the highest accuracy in classifying climate change-related sentiment compared to the other seven models. This implication provides a scientific basis for selecting the most accurate and efficient machine learning model for detecting public sentiment related to climate change, thus supporting more responsive environmental policymaking.
Imperceptible Watermarking Using Discrete Wavelet Transform and Daisy Descriptor for Hiding Noisy Watermark Abdussalam, Abdussalam; Umam, Chaerul; Sari, Wellia Shinta; Rachmawanto, Eko Hari; Shidik, Guruh Fajar; Andono, Pulung Nurtantio; Lestiawan, Heru; Islam, Hussain Md Mehedul
Jurnal Teknik Informatika (Jutif) Vol. 6 No. 2 (2025): JUTIF Volume 6, Number 2, April 2025
Publisher : Informatika, Universitas Jenderal Soedirman

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.52436/1.jutif.2025.6.2.4423

Abstract

This research aims at overcoming the challenge of improving security and robustness in digital image watermarking, a critical activity in protecting intellectual property against misuse and manipulation. In a move to overcome such a challenge, this work introduces a new form of watermarking that incorporates Discrete Wavelet Transform (DWT) and Daisy Descriptor, with a view to enhancing both durability and invisibility of the watermark. The proposed method embeds a noise-variant watermark into selected frequency sub-bands using DWT, while the Daisy Descriptor enhances resistance to noise-based attacks. Testing conducted with three grayscale images, namely Lena, Cameraman, and Lion, each with a resolution of 512 × 512 pixels, showed that the proposed DWT-Daisy Descriptor outperforms current methodologies, producing high Peak Signal-to-Noise Ratio (PSNR) and Structural Similarity Index (SSIM) values. In fact, in Lena, a PSNR value of 63.71 dB and an SSIM value of 1 were attained, with Cameraman having a PSNR value of 68.33 dB and an SSIM value of 1. As for attack resistivity, a high PSNR value of 50.11 dB under Gaussian attack and 55.70 dB under Salt-and-Pepper attack, with SSIM values approaching 1, confirm the robustness of the proposed scheme. This study highlights the significance of an efficient and secure watermarking technique that not only preserves image quality but also withstands various distortions, making it highly relevant for digital content protection in modern multimedia applications.
Securing Medical Images Using Discrete Wavelet Transform (DWT) and Singular Value Decomposition (SVD) for Image Steganography Pramudya, Elkaf Rahmawan; Handoko, L. Budi; Harjo, Budi; Sani, Ramadhan Rakhmat; Sari, Christy Atika; Shidik, Guruh Fajar; Andono, Pulung Nurtantio; Sarker, Md. Kamruzzaman
Jurnal Teknik Informatika (Jutif) Vol. 6 No. 2 (2025): JUTIF Volume 6, Number 2, April 2025
Publisher : Informatika, Universitas Jenderal Soedirman

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.52436/1.jutif.2025.6.2.4426

Abstract

Steganography is a technique for embedding secret information into digital media, such as medical images, without significantly affecting their visual quality. The primary challenge in medical image steganography is preserving the quality of the cover image while ensuring robustness against distortions such as compression or data manipulation attacks, which may impact diagnostic accuracy. This study proposes an enhanced steganographic method based on Discrete Wavelet Transform (DWT) and Singular Value Decomposition (SVD) to improve the security and robustness of medical image embedding. DWT decomposes the medical image into four frequency sub-bands (LL, LH, HL, HH), while SVD is applied to embed the secret image while maintaining essential medical features. Experimental results show that the proposed method achieves a PSNR value of up to 78 dB and an SSIM value approaching 1, indicating that the stego image quality is nearly identical to the original cover image. Compared to previous DCT-SVD and IWT-SVD-based approaches, the DWT-SVD method offers superior robustness and imperceptibility, particularly in preserving image quality in complex-textured medical images. This method contributes to enhancing data security in telemedicine and AI-based medical imaging applications by ensuring that sensitive medical data remains protected while preserving image integrity for diagnostic use.
Peningkatan Literasi PTM Berbasis Posbindu dan Edukasi Bahaya Narkoba dengan Metode Active Knowledge Sharing di Yayasan Rumah Damai Semarang Anggraini, Fitria; Yani Parti Astuti; Dewi Pergiwati; Guruh Fajar Shidik; Edi Noersasongko; Dwi Eko Waluyo; Hayu Wikan Kinasih
Jurnal Pengabdian Kesehatan Masyarakat Mulawarman Vol. 2 No. 2 (2024): Desember 2024
Publisher : Fakultas Kedokteran, Universitas Mulawarman

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

Penghuni rumah rehabilitasi narkoba, merupakan individu yang rentan karena kecanduan narkoba berhubungan erat dengan peningkatan risiko PTM. Peningkatan literasi kesehatan terkait PTM dan sharing session dari para penghuni rumah rehabilitasi narkoba diharapkan dapat memberikan perspektif yang lebih luas mengenai hubungan antara narkoba dan status kesehatan. Belum pernah ada kegiatan pengabdian terkait peningkatan literasi kesehatan kepada pecandu narkoba sehingga kegiatan ini penting dilakukan untuk memberikan kontribusi dalam pengembangan sistem edukasi kesehatan dalam mencegah PTM melalui skrining dan pengelolaan faktor risiko. Pengabdian masyarakat dilakukan di Yayasan Rumah Damai Semarang. Kegiatan pengabdian diawali dengan dilakukannya analisis kebutuhan bersama pemilik dan pengurus yayasan. Kegiatan diawali dengan pengisian pretest. Sesi peningkatan literasi pertama terkait bahaya narkoba dari aspek hukum. Sesi kedua adalah peningkatan literasi penyakit tidak menular untuk penyakit hipertensi, diabetes mellitus, dan kolesterol yang dilanjutkan dengan pemeriksaan dan skrining kesehatan penyakit tidak menular melalui Posbindu PTM. Kemudian, sharing session dengan para penghuni yayasan, post test dan ditutup dengan penyerahan bantuan kebutuhan yayasan.  Literasi dan Posbindu PTM  merupakan program  Kemenkes dalam manajemen PTM yang bagus untuk dilakukan secara rutin dan berkelanjutan. Edukasi bahaya narkoba dengan metode active knowledge sharing mampu meningkatkan meningkatkan semangat, animo, dan antusiasme peserta mengenai dampak dan bahaya nyata dari penggunaan narkoba. Metode active knowledge sharing  sangat  tepat digunakan untuk kegiatan peningkatan edukasi berbasis kelompok/masyarakat karena dilakukan dengan  melibatkan partisipasi keaktifan pembicara.
Optimizing Deep Learning Models with Custom ReLU for Breast Cancer Histopathology Image Classification Nugroho, Wahyu Adi; Supriyanto, Catur; Pujiono, Pujiono; Shidik, Guruh Fajar
Scientific Journal of Informatics Vol. 11 No. 3: August 2024
Publisher : Universitas Negeri Semarang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.15294/sji.v11i3.12722

Abstract

Purpose: The prompt identification of breast cancer is crucial in preventing the considerable damage inflicted by this dangerous form of cancer, which is widely happened across the globe. This study seeks to refine the efficacy of a deep learning-driven approach for the precise diagnosis of breast cancer by employing diverse bespoke Rectified Linear Units (ReLU) to improve the model's performance and reduce inaccuracies within the system. Method: This study focuses on analyzing a deep learning approach utilizing the BreakHis dataset with 7,909 images, incorporating changes to the ReLU activation function across different pre-trained CNN models. It then evaluates performance through measurement such as accuracy, precision, recall, and F1-Score. Result: Based on our experiment results, it can be shown that the DenseNet201 models with a custom LeakyReLU excel beyond the typical ReLU, achieving the highest accuracy, recall, and F1-Score at 99.21%, 99.21%, and 99.11%, respectively. Simultaneously, ResNet152, utilizing LessNegativeReLU (α=0.05), achieved the highest precision at 99.11%. The VGG11 model exhibited the most notable performance enhancement, with improvements ranging from 1.39% to 1.59%. Novelty: The research is original in optimizing a model for accurate breast cancer diagnosis. The proposed model is superior to the model utilizing the default activation function. This finding indicates that the study significantly enhances performance while effectively minimizing errors, thereby necessitating further exploration into the effectiveness of the customized activation function when applied to other medical imaging modalities.
Co-Authors Abdussalam Abdussalam, Abdussalam Affandy Affandy Aisyatul Karima Andrean, Muhammad Niko Andreas Wilson Setiawan Anggraini, Fitria Anhsori, Khusman Astuti, Yani Parti Azzahra, Tarissa Aura Budi Harjo Cahaya Jatmoko Catur Supriyanto Catur Supriyanto Catur Supriyanto Catur Supriyanto Chaerul Umam Chaerul Umam Christy Atika Sari Dewi Pergiwati Dliyauddin, Muhammad Doheir, Mohamed Dwi Eko Waluyo Dwi Puji Prabowo, Dwi Puji Dzaky, Azmi Abiyyu Edi Noersasongko Egia Rosi Subhiyakto, Egia Rosi Eko Hari Rachmawanto Elkaf Rahmawan Pramudya Erlin Dolphina Erna Zuni Astuti Fafaza, Safira Alya Fajrian Nur Adnan Fakhrurrozi Fakhrurrozi, Fakhrurrozi Firmansyah, Rusmal Harun Al Azies Hayu Wikan Kinasih Heru Lestiawan I Ketut Eddy Purnama Ika Pantiawati Islam, Hussain Md Mehedul Junta Zeniarja Kusuma, Edi Jaya Kusumawati, Yupie L. Budi Handoko Lenci Aryani Megantara, Rama Aria Mochamad Hariadi Muhammad Huda, Alam Muhammad Naufal, Muhammad Ningrum, Amanda Prawita Nurmandhani, Ririn Paramita, Cinantya Pergiwati, Dewi Praskatama, Vincentius Pujiono Pujiono Pulung Nurtantio Andono Purwanto Purwanto Putra, Permana Langgeng Wicaksono Ellwid Rafsanjani, Muhammad Ivan Rahadian, Arief Ramadhan Rakhmat Sani Ramadhani, Irfan Wahyu Rastri Prathivi Ratmana, Danny Oka Ricardus Anggi Pramunendar Riri Damayanti Apnena Rohman, Muhammad Syaifur Saputra, Filmada Ocky Saraswati, Galuh Wilujeng Sarker, Md. Kamruzzaman Savicevic, Anamarija Jurcev Shier Nee Saw Sinaga, Daurat Sindhu Rakasiwi Soeleman, M. Arief Sri Winarno Swanny Trikajanti Widyaatmadja Vincent Suhartono Wahyu Adi Nugroho Wellia Shinta Sari Winarsih, Nurul Anisa Sri Yaacob, Noorayisahbe Mohd Yani Parti Astuti Zainal Arifin Hasibuan Zami, Farrikh Al Zul Azri bin Muhamad Noh