cover
Contact Name
Mohammad Arfi Setiawan
Contact Email
marfis@unipma.ac.id
Phone
-
Journal Mail Official
marfis@unipma.ac.id
Editorial Address
-
Location
Kota madiun,
Jawa timur
INDONESIA
CHEESA: Chemical Engineering Research Articles
ISSN : 26148757     EISSN : 26152347     DOI : -
CHEESA: Chemical Engineering Research Articles is scientific journal that publishes articles in the field of Chemical Engineering, Organic Chemistry, Inorganic Chemistry, Analytical Chemistry, Biochemistry, and Physical Chemistry. It is a journal to encourage research publication to research scholars, academicians, professionals and student engaged in their respective field. Author can submit manuscript by doing online submission. Author should prepare their manuscript to the instructions given in Author Guidelines before doing online submission. Template of article can be download in right sidebar. All submissions will be reviewed and evaluated based on originality, technical research, and relevance to journal contributions. Chemical Engineering Research Articles is published by Universitas PGRI Madiun on June and December.
Arjuna Subject : -
Articles 82 Documents
Perbandingan Karbon Aktif-Tempurung Nipah dan Karbon Aktif-Kulit Pisang Kepok Teraktivasi Kalium Hidroksida Fadlilah, Ilma; Triwuri, Nurlinda Ayu; Pramita, Ayu
CHEESA: Chemical Engineering Research Articles Vol. 5 No. 1 (2022)
Publisher : Universitas PGRI Madiun

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.25273/cheesa.v5i1.10992.20-27

Abstract

Penggunaan karbon aktif (activated carbon/AC) semakin luas seperti untuk reaksi kimia, adsorpsi limbah cair dan gas, serta sebagai katalis dalam proses katalitik. AC-tempurung nipah dan AC-kulit pisang kepok telah disintesis dengan aktivator kalium hidroksida (KOH) 0,5 M. Karbonisasi dilakukan dengan furnace pada suhu 300 °C selama 2 jam. Karakterisasi AC dilakukan dengan analisis kadar air, analisis kadar abu, analisis daya serap I2, dan analisis gugus fungsi sebelum proses aktivasi dan setelah proses aktivasi menggunakan FTIR. Nilai kadar air, kadar abu, daya serap terhadap I2berturut-turut adalah 1% ; 9,9%; 1307 mg/g (AC-tempurung nipah) dan 3% ; 7,4% ; 1777 mg/g (AC-kulit pisang kepok), memenuhi kriteria karbon aktif yang telah ditetapkan SNI. Hasil spektra FTIR AC-tempurung nipah dan AC-kulit pisang kepok menunjukkan adanya pergeseran bilangan gelombang serapan gugus -OH setelah aktivasi. Serapan gugus C=C aromatik mengindikasikan telah terbentuknya grafit.
Risk Analysis Related to the Possibility of Using CNG in Trans Jogja Buses Perwitasari, Perwitasari; Anggorowati, Heni; Yusuf, Yusmardhany
CHEESA: Chemical Engineering Research Articles Vol. 5 No. 1 (2022)
Publisher : Universitas PGRI Madiun

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.25273/cheesa.v5i1.10824.28-39

Abstract

One of the issues in urban areas such as DI Yogyakarta province is air pollution. The pollution level is high, as shown by the quality index value of about 85.25 in 2019. Vehicle emissions are the most significant source of this pollution in urban areas and can be decreased by using fuel with minimum carbon emission. Compressed Natural Gas (CNG) is an environmentally friendly fuel. However, a safety study is required because CNG is stored under high pressure. Therefore, this research aims to analyze the risk of using CNG in the Trans Jogja bus. The research method collects secondary data and then processes them using FTA, ETA, ALOHA software, and a risk matrix. The result shows that the risk value for CNG usage in the Trans Jogja bus is low to a moderate level or acceptable.
Pemanfaatan Lignin Serai Wangi Sebagai Lignin Resorsinol Formaldehida (LRF) Menggunakan Ultrasonic Microwave-Assisted Extraction (UMAE) Ramandani, Adityas Agung; Shintawati, Shintawati; Aji, Salomo Pranata; Sunarsi, Sunarsi
CHEESA: Chemical Engineering Research Articles Vol. 5 No. 1 (2022)
Publisher : Universitas PGRI Madiun

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.25273/cheesa.v5i1.10348.40-48

Abstract

Limbah padat serai wangi mengandung lignin cukup tinggi yang dapat berpotensi untuk dikembangkan menjadi berbagai produk komersial, salah satunya adalah perekat. Tujuan dari penelitian ini adalah untuk mendapatkan kondisi optimum dalam pembuatan lignin resorsinol formaldehida (LRF) dari limbah serai wangi menggunakan metode Ultrasonic Microwave-Assisted Extraction (UMAE). Rancangan percobaan menggunakan response surface methodology (RSM) khususnya Box-Behnken Design (BBD). Variabel bebas dalam riset ini adalah volume NaOH (10, 13 dan 16 mL), waktu reaksi (10, 20 dan 30 menit), dan komposisi perekat (4, 6 dan 8 gram). Hasil penelitian menunjukkan perekat lignin LRF yang dihasilkan memenuhi SNI 06-4567-1998 untuk parameter berat jenis, waktu gelatinisasi, dan sisa penguapan. Daya tahan rekat (delaminasi) LRF yang dihasilkan memenuhi standar JAS 1996 yaitu rata rata 0%. Kondisi optimum pembuatan LRF dicapai pada penambahan NaOH 15,0561 mL, waktu reaksi 20 menit dan massa lignin 4 gram dengan daya tahan rekat (delaminasi) tertinggi yang dihasilkan 1 %.
The Effectiveness of Green Scallop Shell Chitosan as Coagulant in Treatment of Tofu Industrial Liquid Waste Fauziah, Nurlaili; Ain, Ma'rifatul; Dewati, Retno
CHEESA: Chemical Engineering Research Articles Vol. 5 No. 2 (2022)
Publisher : Universitas PGRI Madiun

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.25273/cheesa.v5i2.13019.49-58

Abstract

Tofu waste is gotten after processing soybean, and this waste contains a lot of polluting substances, hence it can pollute rivers and cause health problems. Meanwhile, one method used for treating wastewater into clean water is called the jartest method and its processes include coagulation-flocculation and deposition. This study aims to determine the effectiveness of green mussel shells as coagulants in the treatment of tofu industrial liquid waste. The variables used were 100 mesh green mussel shell powder, 1000 mL of liquid tofu dregs, 150 rpm fast stirring speed for 2 minutes, and 60 rpm slow stirring speed for 15 minutes. Furthermore, chitosan was used with different weight variations in grams (0.5, 0.7, 0.9, 1.1, and 1.3) as well as precipitation time with variations in minutes (20, 30, 40, 50, and 60). The content of Chitosan water was 1.29% and its degree of deacetylation was 65.04%. The result of the preliminary analysis of tofu liquid waste with a coagulant showed BOD, COD, and TSS levels of 965.25mg/L, 435mg/L, and 395mg/L with pH 4 respectively. However, these levels were changed to 195.56mg / L; 299mg/L; and 195.32 mg/L with pH 6 after the final analysis of the liquid waste was conducted.
Quality Evaluation of Bioplastic from Glutinous Rice Starch Reinforced with Bamboo Leaf Powder Arifin, Uma Fadzilia; Adetya, Nais Pinta; Pambudi, Wisnu; Ratnaningsih, Wahyu
CHEESA: Chemical Engineering Research Articles Vol. 5 No. 2 (2022)
Publisher : Universitas PGRI Madiun

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.25273/cheesa.v5i2.14235.82-91

Abstract

Plastics are widely used in various aspects of life due to their variety of superior properties. However, they contribute a negative impact on the environment, which leads to the search for an alternative solution such as the production of bioplastics as biodegradable plastics. Therefore, this study aims to evaluate the psycho-mechanic quality of bioplastic from glutinous rice starch reinforced with bamboo leaf powder. The bioplastic synthesis process was carried out using 0, 1, 3, 5, and 7% (w/w) variations of bamboo leaf powder on glutinous rice starch, respectively. The results showed that the best bioplastic composition was the addition of 3% (w/w) bamboo leaf powder to glutinous rice starch. This indicated that the addition of bamboo leaf powder in bioplastics can enhance the thickness, hardness, and tensile strength significantly. Meanwhile, the value of density, water vapor transmission rate, and elongation showed a slight increase, and the bioplastic also degraded more than 70% for 7 days.
Ultrasonic-Assisted Flavonoid Extraction from Ant Nest Indriyani, Nita; Goa, Yusnita La; Ely, Muthmainnah; Mendy, Elton
CHEESA: Chemical Engineering Research Articles Vol. 5 No. 2 (2022)
Publisher : Universitas PGRI Madiun

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.25273/cheesa.v5i2.12231.59-64

Abstract

The extraction of active substances from ant nests can be affected by various extraction methods, whether conventional or sonication. Sample extraction was carried out by maceration and ultrasonic methods with the use of solvents to yield flavonoid compounds. The solvents used were aquadest, 70% ethanol and n-hexane, with a material-to-solvent ratio of 1:50 (w/v). The highest flavonoid content of 14% was obtained by ultrasonic-assisted extraction method, with aquadest as the solvent and at operating conditions of 24 minutes at a temperature of 40oC. Due to their high aquadest solubility and the presence of one or more sulphate ions that are bound to the hydroxyl phenol or sugar, the flavonoids produced are classified as flavonoid sulphate.
Determination of Content and Oil Losses in Meal through Palm Kernel Pressing Process at PT XYZ Belawan Simatupang, Dimas Frananta; Ginting, Maulidna; Agrifa, Utami Nanda; Sitinjak, Anna Angela; Simbolon, Merta
CHEESA: Chemical Engineering Research Articles Vol. 5 No. 2 (2022)
Publisher : Universitas PGRI Madiun

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.25273/cheesa.v5i2.9255.65-73

Abstract

PT XYZ Belawan has a kernel crushing plant unit that produces Crude Palm Kernel Oil (CPKO) with 700 tons/day capacity. Palm kernel processing is carried out in two pressing stages. The first stage or first press produces oil and cake, while the second stage or second press produces oil and meal. The meal still contains 7-8% of the oil content. This study is aimed to determine the amount of CPKO yield, oil content, and oil losses in a meal during the pressing palm kernel process. The method used was the calculation of the mass balance in each process flow. The mass balance calculation is carried out after collecting the secondary data from the factory, including the analysis of water content, solids, FFA, and oil content. Based on the calculation results, CPKO yield was 48.10% of the average kernel mass rate of 714.7155 tons and met the plant standard of at least 44%. Furthermore, the average yield of oil content from the meal was 7.45% and oil losses were 3.86%.
Enhancement of the Quality of Onion Drying Using Tray Dryer Fadilah, Siska Nuri; Khamil, Achri Isnan; Muharja, Maktum; Darmayanti, Rizki Fitria; Aswie, Viqhi
CHEESA: Chemical Engineering Research Articles Vol. 5 No. 2 (2022)
Publisher : Universitas PGRI Madiun

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.25273/cheesa.v5i2.13968.74-81

Abstract

Previous reports showed that there has been a continuous increase in the annual production of onion in Indonesia, and it is inversely proportional to the market price. The price drop is often caused by the high water content, which makes it easy to rot. Preservation of onions through a tray dryer is a good preservation method because it is effective and does not require much energy. Therefore, this study aims to determine the effect of variations in time, material thickness, and air velocity on the drying rate of onions. The samples were sliced to a size of 2 - 5 mm, followed by drying for 60 min using a tray dryer with different air rates between 4 - 7 m/s, and the rate of the process was observed every 15 min. The results showed that the drying time reduced the humidity in the chamber. The highest rate of 0.525 g/min was obtained at the peak air rate of 7 m/s. ANOVA results revealed that variations in time, onion thickness, and flow rate have a significant effect on increasing the drying rate of onions. This indicates that the method can be an effective and efficient solution to optimize the drying of the commodity.
Synthesis and Characterization of SCDs/TiO2 Composite Aritonang, Anthoni Batahan; Sapar, Ajuk; Sari, Heni Puspita; Ardiningsih, Puji; Adhitiyawarman, Adhitiyawarman
CHEESA: Chemical Engineering Research Articles Vol. 5 No. 2 (2022)
Publisher : Universitas PGRI Madiun

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.25273/cheesa.v5i2.13915.92-100

Abstract

Synthesis of sulphur-doped carbon nanodots immobilized on the TiO2 surface (SCDs/TiO2) composite was carried out using the sol-gel method with SCDs and titanium tetraisopropoxide (TTIP) as precursors. SCDs were prepared from citric acid monohydrate, urea, and sodium disulphite using the microwave technique. SCDs/TiO2 was then visually observed under UV 365 nm and characterized by UV-Vis diffuse reflectance spectrophotometry (UV-Vis/DRS), Photoluminescence (PL) spectroscopy, Fourier transform infrared (FT-IR), and X-ray diffraction (XRD). The SCDs/TiO2 composite product had a brown solid with a green luminescent under UV light. Furthermore, UV-Vis/DRS for variations in SCDs concentrations of 0.5%; 1.25%, and 2.5% showed Eg values of 2.33 eV, 2.14 eV, and 1.61 eV, respectively. The results showed that SCDs caused the maximum emission peak (λEm) to redshift and also affected the intensity of PL TiO2. There was also a shift in the absorption peak towards the visible light region. Based on the results, the 0.5% SCDs/TiO2 was the optimum concentration with the lowest intensity as an indication of separation of the (e-) and (h+) charge pairs, which greatly enhanced the photocatalytic efficiency.
Analysis of Pyrolytic Product Distribution for B3 and Non-B3 Medical Waste Pyrolysis Rezeki, Tri Nur; Ridwan, Abrar; Meka, Wahyu; Fitri, Yulia; Mahendra, Rain Agri; Hamzah, Munawir; Widara, Laras Sita; Athala, Azzalya Putri
CHEESA: Chemical Engineering Research Articles Vol. 5 No. 2 (2022)
Publisher : Universitas PGRI Madiun

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.25273/cheesa.v5i2.14134.101-110

Abstract

The coronavirus disease (COVID-19) has badly impacted many sectors, particularly medical waste generation in healthcare facilities. The increasing amount of medical waste poses a serious threat to health and environmental sustainability. Traditional waste processing (burning) cannot be used for B3 medical waste and is often mixed with non-B3 medical waste. This is because it potentially generates dangerous chemicals emitted into the atmosphere. Meanwhile, pyrolysis as a superior thermochemical technology is an effective solution for treating both B3 medical waste and non-B3 medical waste. The waste used in this study has good characteristics, as indicated by the low water and high fixed carbon content. The pyrolysis process yields products with economic value, such as solid, liquid, and gas products. Therefore, this study aims to determine the levels of products that can be produced from B3 and non-B3 medical waste. The results showed that rubber bands produce the highest proportion of liquid products at 44%, the highest solid products were obtained from LDPE plastic waste with a proportion of 65%, while the highest gas product was produced by mask waste at 45%. Based on the results, waste with high product yields can be used as an alternative energy source, such as gasoline, LPG, briquettes, and battery-based materials.