Claim Missing Document
Check
Articles

Found 2 Documents
Search
Journal : Automotive Experiences

Low Pass Filter as Energy Management for Hybrid Energy Storage of Electric Vehicle: A Survey Maghfiroh, Hari; Wahyunggoro, Oyas; Cahyadi, Adha Imam
Automotive Experiences Vol 6 No 3 (2023)
Publisher : Automotive Laboratory of Universitas Muhammadiyah Magelang in collaboration with Association of Indonesian Vocational Educators (AIVE)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.31603/ae.9398

Abstract

The transportation sector contributes up to 35% of carbon dioxide pollution. Electric Vehicles (EVs) offer a pollution-free alternative but face a crucial challenge in their battery-based Energy Storage System (ESS). The solution to the battery issues is combining it with other ESS with high power density called a Hybrid Energy Storage System (HESS). Energy Management Strategy (EMS) is used to distribute the power demand in the HESS. Low Pass Filters (LPFs) are one type of EMS that can be used to ensure the smooth flow of power between different energy storage elements. This article focuses on the pivotal role of Low Pass Filters (LPFs) within HESS for EVs, facilitating seamless power flow. The novelty lies in the comprehensive review of LPFs in this context, shedding light on their impact on energy management. Four LPF architecture classes are discussed: fixed cut-off, optimal cut-off, adaptive cut-off, and combination, referencing prior research. Additionally, a critical examination of challenges and limitations is provided, offering insights for researchers and practitioners.
Hybrid Catenary-Battery Trains for Non-Electrified Sections and Emergency Use Nizam, Muhammad; Maghfiroh, Hari; Putra, Mufti Reza Aulia; Jamaluddin, Anif; Inayati, Inayati
Automotive Experiences Vol 8 No 2 (2025)
Publisher : Automotive Laboratory of Universitas Muhammadiyah Magelang in collaboration with Association of Indonesian Vocational Educators (AIVE)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.31603/ae.13440

Abstract

The hybrid catenary–battery system offers a promising solution for railways operating in non-electrified sections and during emergencies, ensuring uninterrupted operation, enhanced safety, environmental sustainability, and cost efficiency. This study addresses the challenge of determining an appropriate battery size and introduces a novel rule-based Energy Management Strategy (EMS) with coasting mode to minimize energy consumption while meeting operational requirements. The novelty of this work lies in (i) a straightforward sizing method based on worst-case emergency scenarios and (ii) the integration of coasting-mode operation into a rule-based EMS for hybrid catenary–battery trains. Simulation results show that the proposed approach achieves up to 12.56% energy savings on 3% gradient tracks while fully supplying auxiliary loads, compared with baseline operation that provides only partial coverage. These results demonstrate a practical and scalable framework for designing efficient, reliable, and resilient railway transport systems.