Claim Missing Document
Check
Articles

Found 2 Documents
Search
Journal : Malcom: Indonesian Journal of Machine Learning and Computer Science

Deteksi Kalori Makanan Tradisional Indonesia Menggunakan Metode Single Shot Multibox Detector (SSD): Calorie Detection of Traditional Indonesian Food Using the Single Shot Multibox Detector (SSD) Method Riswanto, Riswanto; Ahmad, Andani; Hazriani, Hazriani; Tribuana, Dhimas
MALCOM: Indonesian Journal of Machine Learning and Computer Science Vol. 4 No. 3 (2024): MALCOM July 2024
Publisher : Institut Riset dan Publikasi Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.57152/malcom.v4i3.1332

Abstract

Tujuan penelitian untuk mengembangkan sistem pendeteksi kalori makanan dengan menggunakan metode Single Shot Multibox Detector (SSD). Juga, bertujuan untuk mengatasi masalah manusia yang kesulitan dalam mengestimasi jumlah kalori yang dikonsumsi dari makanan. Dengan menggunakan model kecerdasan buatan dan bantuan kamera pada perangkat ponsel, pada penelitian ini memungkinkan pengguna untuk melakukan estimasi kalori yang lebih akurat. Sistem ini dirancang secara otomatis untuk mengidentifikasi dan memperkirakan jumlah kalori dalam makanan berdasarkan citra visual. Pemilihan metode SSD didasarkan pada keunggulannya dalam mendeteksi objek dengan tingkat akurasi yang tinggi dan kecepatan pengolahan yang cepat. Proses penelitian melibatkan beberapa tahap, termasuk pengumpulan dataset citra makanan, pelatihan model SSD dengan konfigurasi Hyperparameter pada 40.000 langkah, menggunakan data training sebanyak 90%, validasi 10%, dan testing 10%, serta menggunakan batch size 16 dan learning rate 0.007943453. Hasil eksperimen menunjukkan total loss sebesar 0.1670681 dan mean average precision (mAP) sebesar 65.09%. Jenis makanan berhasil dideteksi dengan baik, dan aplikasi mobile terkait mampu mengestimasi kalori makanan setelah deteksi jenis makanan. Meskipun demikian, penelitian mengidentifikasi beberapa tantangan, terutama dalam meningkatkan akurasi deteksi pada makanan dengan struktur kompleks atau variasi presentasi yang ekstensif. Temuan dari penelitian ini diharapkan dapat memberikan kontribusi penting dalam pengembangan sistem pendukung keputusan untuk pemantauan otomatis asupan kalori. 
Klasifikasi Sapi Perah dan Non-Perah Menggunakan Algoritma Convolutional Neural Network: Classification of Dairy and Non-Dairy Cattle Using the Convolutional Neural Network Algorithm Maramis, Leonard; Nurtanio, Ingrid; Zainuddin, Hazriani
MALCOM: Indonesian Journal of Machine Learning and Computer Science Vol. 5 No. 2 (2025): MALCOM April 2025
Publisher : Institut Riset dan Publikasi Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.57152/malcom.v5i2.1824

Abstract

Sapi merupakan salah satu hewan ternak utama di Indonesia yang terdiri dari sapi perah dan sapi potong. Di Kotamobagu dan Bolaang Mongondow Raya (BMR), peternakan sapi berkembang pesat seiring dengan meningkatnya daya beli masyarakat dan nilai jual sapi yang tinggi. Namun, transaksi jual-beli sapi masih menghadapi kendala, terutama dalam membedakan jenis sapi yang dapat menyebabkan kesalahan dan potensi penipuan. Penelitian ini bertujuan untuk mengimplementasikan algoritma Convolutional Neural Network (CNN) dengan arsitektur Xception dalam klasifikasi sapi perah dan non-perah. Proses penelitian mencakup pengumpulan data citra sapi, pelabelan, serta pelatihan model CNN untuk mengenali karakteristik fisik masing-masing jenis sapi. Hasil pengujian menunjukkan bahwa model Xception mencapai akurasi 96% dengan pembagian dataset 80:20, membuktikan kemampuannya dalam mengenali pola visual dengan baik. Temuan ini menunjukkan bahwa CNN, khususnya dengan arsitektur Xception, dapat menjadi alat yang efektif dalam identifikasi jenis sapi, sehingga berpotensi meningkatkan keamanan dan keakuratan dalam transaksi ternak. Dengan pengembangan lebih lanjut, sistem ini dapat diintegrasikan dengan teknologi kamera untuk pemantauan otomatis guna mendukung industri peternakan yang lebih modern dan efisien.