Claim Missing Document
Check
Articles

Sistem Informasi Inventory dengan Notifikasi Bot Telegram Berbasis Website (Studi Kasus PT. Global Data Akses Syafaat, Dany; Fitrani, Arif Senja
Indonesian Journal of Applied Technology Vol. 1 No. 2 (2024): April
Publisher : Indonesian Journal Publisher

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.47134/ijat.v1i2.3055

Abstract

: PT. Global Data Akses Persada atau GDAP adalah sebuah perusahaan yang bergerak pada bidang Internet Service Provider (ISP), yang berfokus pada bidang penyediaan Produk dan Jasa untuk berbagai kebutuhan IT. Dalam proses bisnis pendataan inventory barangnya yang masih menggunakan cara manual hal ini yang sering menimbulkan selisih jumlah pada saat di audit , belum adanya sistem inventory yang digunakan untuk mengelola data inventory tersebut serta memberikan notifikasi barang mana saja yang perlu di restock kembali adalah permasalahannya , maka dari itu penulis berusaha memberikan solusi sebuah sistem informasi inventory dengan notifikasi bottelegram berbasis website yang diusahakan lebih mobile friendly untuk kebutuhan pendataan inventory barang pada perusahaan. Pada sistem inventory ini akan dibangun dengan menggunakan berbasis webisite PHP , Mysql, dan Codeigniter dimana juga akan terkoneksi dengan menggunakan bot telegram sebagai pengirim notifikasi jumlah stok barang yang ada pada gudang, sehingga akan lebih praktis dan informatif serta mudah di ketahui oleh staff perusahaan jumlah stok barang.
Sistem WhatsApp sebagai Notifikasi pada UMSIDA Farm Store Berbasis Web Bimantoro, Riky Andreansyah; Fitrani, Arif Senja; Busono, Suhendro
Journal of Internet and Software Engineering Vol. 1 No. 1 (2024): January
Publisher : Indonesian Journal Publisher

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.47134/pjise.v1i1.2248

Abstract

Semakin berkembangnya ilmu pengetahuan semakin tingginya peran teknologi untuk mendukung segala kegiatan yang berhubungan dengan pekerjaan. Kegiatan yang dilakukan secara manual kini kebanyakan sudah tergantikan dengan sistem komputerisasi hal ini digunakan agar bisa bersaing dan mendapatkan keuntungan, dengan menambahkan teknologi komputerisasi ini dapat meningkat efisiensi dalam suatu usaha. Dalam komputerisasi ini segala informasi yang berhubungan dengan kegiatan transaksi dapat mudah di lakukan, hal ini didukung dengan sistem informasi Instant Messaging (IM) yang saat ini sedang trending adalah Whatsapp Messenger. Sebagai salah satu media sosial yang memberikan tren baru dalam menyebarkan informasi dari satu pengguna ke pengguna lain Whatsapp sering digunakan sebagai media pendukung dimana informasi tentang barang yang akan di transaksikan. Transaksi yang baik tidak lepas dari tata kelola stok barang yang baik, benar dan informatif hal ini dapat menunjang keberlangsungan suatu usaha. Tujuan penelitian ini adalah membangun aplikasi yang dapat mengatur stok barang yang ada pada rak penjualan dan juga memberi informasi berupa notifikasi jika stok barang sedang menipis diharapkan untuk melakukan re-stock barang tersebut.
Penerapan Algoritma Support Vector Machine untuk Memprediksi Tingkat Partisipasi Pemilu terhadap Kualitas Pendidikan Anggraeni, Anifah Warda; Fitrani, Arif Senja; Eviyanti, Ade
Jurnal Pendidikan Informatika (EDUMATIC) Vol 8 No 1 (2024): Edumatic: Jurnal Pendidikan Informatika
Publisher : Universitas Hamzanwadi

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.29408/edumatic.v8i1.24838

Abstract

Elections are a democratic means of choosing leaders. Public participation in elections is important for a healthy democracy. The quality of education influences public participation in elections. Therefore, the government needs to improve the quality of education in the Pasuruan Regency area. This research aims to predict the level of participation in elections on the quality of education in Pasuruan Regency. This research uses the Education sector dataset obtained from BPS data for Pasuruan Regency in 2022 and the level of election participation obtained from the recapitulation of the 2019 election results. Data analysis was carried out in an experimental stage to determine the variables to be predicted (target variables) and the variables used to predict it (predictor variable) using the Support Vector Machine (SVM) algorithm with three kernels, namely linear, rbf, and polynomial. The findings show an accuracy of 88.4% for the linear kernel, 88.5% for the rbf kernel, and 88.5% for the polynomial kernel. The quality of education can influence the level of election participation. This is because high quality education can increase public awareness of the importance of participating in elections.
KLASIFIKASI TINGKAT PARTISIPASI PEMILU BERDASARKAN SEKTOR INDUSTRI MENGGUNAKAN ALGORITMA NAÏVE BAYES Yusuf Raharja; Arif Senja Fitrani; Rohman Dijaya
Jurnal Tekinkom (Teknik Informasi dan Komputer) Vol 7 No 1 (2024)
Publisher : Politeknik Bisnis Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.37600/tekinkom.v7i1.1204

Abstract

Elections represent the highest form of people's power and a democratic means to elect representatives and leaders. Public participation, influenced by demographics especially in the industrial sector, is a crucial indicator of an election's success. This research aims to classify the level of electoral participation in Pasuruan Regency based on demographic aspects, particularly in the industrial sector of Pasuruan Regency. The demographic dataset includes geography, population, industrial sector and other aspects at the village level sourced from the Pasuruan Regency Central Statistics Agency with a total of 80 attributes designated as predictor attributes and 2019 election recapitulation data on the level of community participation at the voting place specified as target attribute. The preprocessing steps include data cleaning, data transformation, data integration, attribute correlation, random dataset, forming two model datasets, and splitting the data with a 70:30 ratio. The method used in this research is the classification method with the Naïve Bayes algorithm. The results of the testing of model dataset 1 produced an accuracy of 61.8% and model dataset two produced an accuracy of 67.6%. The number of industries in Pasuruan Regency does not have a significant influence on the level of public participation in elections in Pasuruan Regency.
PENGEMBANGAN PENGENDALI PERANGKAT ELEKTRONIK DENGAN NODEMCU MELALUI BOT TELEGRAM M. Purnomo Adji Saputro; Irwan Alnarus Kautsar; Arif Senja Fitrani; Suprianto Suprianto
Jurnal Tekinkom (Teknik Informasi dan Komputer) Vol 7 No 1 (2024)
Publisher : Politeknik Bisnis Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.37600/tekinkom.v7i1.1237

Abstract

In the era of continuing globalization, technological progress is increasingly rapid and motivates people to compete in creating the latest breakthroughs. In this digitalization era, many innovations have emerged that can be maximized in everyday life, one of which is maximizing the Internet of Things with the Telegram application which can controlled via NodeMCU, which is an IoT-based open-source microcontroller that offers extraordinary flexibility and NodeMCU acts as a microcontroller that allows management of electronic devices, connected to Telegram bots operated by programmed software. In the research above, the author used the SDLC approach with the Waterfall method. This research discusses the development of controlling electronic devices with nodemcu via telegram bots as well as knowing the measurement of electrical power consumption when using them. The conclusion of this research shows that building a controller to control IoT-based electronic devices using an Android smartphone provides significant benefits. With this system, users can control devices remotely and at any time without having to approach a physical switch, very useful especially in multi-story buildings. Apart from that, this system also allows real-time measurement of electrical energy consumption, allowing users to monitor power consumption on electronic devices via Telegram bots
Introduction to Places of Worship of Religious People in Indonesia Augmented Reality Based As Learning Media for Early childhood Hadi, Miftakhul; Astutik, Ika Ratna Indra; Rosid, Mochamad Alfan; Fitrani, Arif Senja
Indonesian Journal of Islamic Studies Vol 11 No 3 (2023): August
Publisher : Universitas Muhammadiyah Sidoarjo

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.21070/ijis.v11i3.1681

Abstract

This study aims to introduce an innovative method for religious learning among early childhood in Indonesia by leveraging augmented reality (AR) technology. The research utilizes marker-based tracking, which does not require high-performance Android devices, to create a seamless interaction between virtual religious objects and the real world. The multimedia development lifecycle method is employed in application development, successfully operating on Android devices with versions 7.0 and above. The results demonstrate relatively good marker quality even when printed at A4 and F4 sizes. This research underscores the potential of AR technology as a powerful tool for instilling religious knowledge and habits in young children, offering a promising avenue for future educational interventions. Highlights: AR Enhances Early Religious Education: Augmented reality technology offers an engaging and effective platform for imparting religious knowledge to young children. Marker-Based Simplicity: The use of marker-based tracking simplifies AR implementation, making it accessible even on lower-end Android devices. Potential for Future Interventions: This research highlights the promising potential of AR in early childhood education, paving the way for innovative pedagogical approaches. Keywords: Augmented Reality, Early Childhood Education, Religious Learning, Marker-Based, Tracking, Multimedia Development
Deteksi prakejang pada pasien epilepsi berdasarkan rekam sinyal EEG menggunakan metode LSTM Eviyanti, Ade; Fitrani, Arif Senja; Nisak, Umi khoirun; Agustin, Erlina; Zahputra, Aldy Trisza
INTEGER: Journal of Information Technology Vol 10, No 1: April 2025
Publisher : Fakultas Teknologi Informasi Institut Teknologi Adhi Tama Surabaya

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.31284/j.integer.2024.v10i1.7459

Abstract

Epilepsi adalah penyakit otak yang tidak menular dan memengaruhi sekitar 50 juta orang di dunia. Sinyal electroencephalogram (EEG) memberikan informasi penting tentang aktivitas listrik otak. Epilepsi bisa terdeteksi melalui analisis sinyal EEG, tetapi prosesnya rumit, membutuhkan keterampilan manusia, dan memakan waktu. Deteksi prakejang pada pasien epilepsi merupakan tantangan dalam bidang neurologi. Dalam penelitian ini, kami memfokuskan pada pengembangan metode deteksi prakejang menggunakan sinyal EEG dan menggunakan pendekatan metode Long Short-Term Memory (LSTM). Dalam analisisnya. Sinyal EEG direkam dari pasien epilepsi selama periode tertentu, dan kemudian dilakukan pemrosesan dan analisis menggunakan metode LSTM. LSTM adalah jenis jaringan saraf rekuren (RNN) yang terkenal karena kemampuannya dalam memodelkan dan mempelajari urutan data. Pendekatan LSTM memungkinkan pemodelan yang lebih baik terhadap karakteristik dinamis sinyal EEG, termasuk pola sebelum terjadinya prakejang. Dalam penelitian ini, kami menggunakan dataset sinyal EEG yang terdiri dari pasien epilepsi dengan prakejang dan tanpa prakejang. Data tersebut dibagi menjadi set pelatihan dan set pengujian untuk melatih dan menguji model LSTM. Proses pelatihan model dilakukan dengan mengoptimalkan parameter dan menyesuaikan bobot jaringan LSTM berdasarkan data pelatihan. Hasil eksperimen menunjukkan bahwa metode LSTM mampu mendeteksi prakejang pada pasien epilepsi dengan tingkat akurasi 98.44% dengan menggunakan optimizer RMSprop. Penelitian ini memberikan kontribusi dalam pengembangan teknik deteksi prakejang pada pasien epilepsi menggunakan sinyal EEG dan metode LSTM. Hasil-hasil penelitian ini dapat digunakan sebagai dasar untuk pengembangan sistem deteksi prakejang yang lebih lanjut.
Development of Integrated Online Course Learning (IOCL) Model to Improve Students' Literacy Skills in Digital Era 5.0 Nurdyansyah Nurdyansyah; Arif Senja Fitrani; RR. Debby Amalia Azhari; Pandi Rais
Jurnal Kependidikan: Jurnal Hasil Penelitian dan Kajian Kepustakaan di Bidang Pendidikan, Pengajaran dan Pembelajaran Vol 11, No 1 (2025): March
Publisher : Universitas Pendidikan Mandalika (UNDIKMA)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.33394/jk.v11i1.14827

Abstract

This study aims to develop and analyse the feasibility, practicality and effectiveness of Integrated Online Course Learning (IOCL) application in improving students' digital literacy skills. This research uses the Research and Development (RnD) method using the ADDIE model, namely analysis, design, development, implementation, and evaluation. The data collection techniques used were questionnaires, document checklists and tests in the form of descriptive quantitative data. The analysis technique used in this research is mixed data analysis technique.  Based on the results of media expert validation, a value of 3.68 (92.18%) was obtained, which means very feasible, for the results of material expert validation obtained a value of 3.83 (95.71%) with a very feasible category, while the results of linguist validation obtained a value of 3.80 (95.00%) with a very feasible category. The practicality test of this product obtained a score of 94.64%, including in the category of very effective and practical to use. The results of the t-test showed a significant increase in students' digital literacy skills after receiving different treatments, namely using the IOCL Application. Based on the results of the t-test analysis of the average value of the control class 70.25 and the research class 87.50. Based on the data sig value. (2-tailed) or t-test p-value of 0.00 which means <0.05, it can be concluded that Ho is rejected and Ha is accepted. This shows: 1) This IOCL application has a positive influence on students' digital literacy skills, and 2) IOCL application has practicality, and effectiveness to be used as a learning model to improve students' digital literacy skills.
Prediction Model of Voter Participation Using Naïve Bayes and Village Development Indicators: Model Prediksi Partisipasi Pemilih Menggunakan Naïve Bayes dan Indikator Pembangunan Desa Abidin, Husnul; Fitrani, Arif Senja; Setiawan, Hamzah; Indahyanti, Uce
Indonesian Journal of Cultural and Community Development Vol. 16 No. 2 (2025): June
Publisher : Universitas Muhammadiyah Sidoarjo

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.21070/ijccd.v16i2.1243

Abstract

Background: Electoral participation reflects the quality of democracy, particularly in rural communities with diverse socioeconomic structures. Specific Background: In Sidoarjo Regency, disparities in participation levels among villages suggest that local development factors play a crucial role. Knowledge Gap: Previous models only used demographic attributes without integrating the multidimensional Village Development Index (IDM) indicators. Aims: This study aims to construct a predictive model of voter participation using the Naïve Bayes classification algorithm based on IDM data. Results: By applying preprocessing, feature selection, and probabilistic classification to 48 attributes of IDM, the model achieved 78.65% accuracy, 79% precision, 76% recall, and 77% F1-score, revealing that education, health, and accessibility variables are key predictors. Novelty: Unlike prior research, this work combines social, economic, and ecological IDM dimensions with an open-source Python-based approach for transparent model validation. Implications: The findings demonstrate the feasibility of data-driven governance tools for mapping electoral participation and can support strategic planning to improve civic engagement in rural Indonesia.Highlights:• Uses IDM indicators to predict election participation• Naïve Bayes model achieves 78.65% accuracy• Supports data-driven democratic planning
Decision Tree Analysis for Predicting Voter Participation Using IDM Data: Analisis Pohon Keputusan untuk Memprediksi Partisipasi Pemilih Menggunakan Data IDM Yuwanto, Mahmud Adi; Fitrani, Arif Senja; Dijaya, Rohman; Indahyanti, Uce
Indonesian Journal of Cultural and Community Development Vol. 16 No. 2 (2025): June
Publisher : Universitas Muhammadiyah Sidoarjo

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.21070/ijccd.v16i2.1255

Abstract

General Background: Voter participation serves as a core indicator of democratic quality and civic awareness. Specific Background: In East Java’s Mataraman region, significant disparities in electoral participation highlight socioeconomic influences measurable through the Village Development Index (IDM). Knowledge Gap: No prior research integrates IDM-based indicators with machine learning methods for voter behavior prediction. Aims: This study develops a classification model using C4.5, Naïve Bayes, and SVM algorithms to predict voter participation based on IDM attributes. Results: The Decision Tree C4.5 algorithm achieved the highest accuracy (80.87%) and F1-score (0.88) compared to Naïve Bayes and SVM, identifying education and healthcare access as primary determinants of high participation. Novelty: The integration of IDM and C4.5 classification introduces a novel framework for data-driven political participation analysis. Implications: The model can assist policymakers and electoral bodies in targeting civic engagement initiatives within underrepresented regions. Highlights: C4.5 algorithm effectively predicts voter engagement. Education and health access influence participation. Data-driven policy enhances democratic quality.