Claim Missing Document
Check
Articles

Found 38 Documents
Search

Evaluasi Pembelajaran AR Sejarah Berbasis SUS, UEQ, TAM Rudi Kurniawan; Dadang Sudrajat; Kaslani; Gifthera Dwilestari; Sandy Eka Permana
Prosiding SISFOTEK Vol 9 No 1 (2025): SISFOTEK IX 2025
Publisher : Ikatan Ahli Informatika Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

History education in secondary schools still faces challenges in presenting material that attracts the digital generation’s attention. The Bandung Lautan Api event, a topic rich in local and national values, is often taught using conventional methods that limit student engagement and motivation. This study evaluates the feasibility of Augmented Reality (AR)-based learning media to enhance students’ historical literacy on the Bandung Lautan Api topic. A quantitative approach was applied using three integrated evaluation models: the System Usability Scale (SUS), User Experience Questionnaire (UEQ), and Technology Acceptance Model (TAM), involving 100 respondents comprising high school teachers and students. The results indicate that the AR media demonstrates excellent usability (SUS = 87.69), a highly positive user experience across all UEQ dimensions (highest attractiveness = 2.12), and strong technology acceptance (PU = 5.87; PEOU = 5.69; BI = 6.18). Both teachers and students shared consistent perceptions. These findings confirm that the AR media is feasible and capable of creating immersive and interactive learning experiences. Theoretically, this research enriches AR-based learning evaluation literature, while practically, it provides a ready-to-adopt model for integrating AR into history education.
Pengaruh Augmentasi Data dan Dropout terhadap Generalisasi Model Deteksi Kerusakan Panel Surya Irfan Ali; Rudi Kurniawan; Dadang Sudrajat; Saeful Anwar; Nining Rahaningsih
Prosiding SISFOTEK Vol 9 No 1 (2025): SISFOTEK IX 2025
Publisher : Ikatan Ahli Informatika Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

Automatic defect detection in photovoltaic (PV) panels is a crucial challenge for maintaining energy efficiency and reliability in renewable power systems. However, the limited availability of labeled datasets and high environmental variability often lead deep learning models to overfit and lose generalization capability. This study investigates the combined effects of data augmentation and dropout regularization on improving the generalization performance of transfer learning-based models for multi-class PV defect classification. Two pretrained architectures, VGG16 and InceptionV3, were fine-tuned using the Faulty Solar Panel dataset comprising six defect categories. Experiments were conducted under three main configurations: (1) baseline without regularization, (2) augmentation only, and (3) combined augmentation–dropout with dropout rates of 0.2, 0.3, and 0.5. Performance evaluation employed accuracy, precision, recall, macro-F1, and confusion matrix analysis for each defect class. The results demonstrate that the combination of data augmentation and moderate dropout (0.3) significantly enhances generalization, achieving 92.10% accuracy and 0.90 macro-F1 with the InceptionV3 architecture. Higher dropout values (0.5) caused slower convergence and decreased accuracy. These findings confirm that balanced integration of augmentation and dropout effectively mitigates overfitting and strengthens model robustness under limited and imbalanced data conditions. The proposed approach provides practical implications for implementing reliable, lightweight, and deployable deep learning-based inspection systems in real-world PV monitoring using edge computing devices.
Integrasi Deep Learning Multimodal Untuk Peramalan Penjualan Toko Menggunakan Keras Functional API Khaerul Anam; Dadang Sudrajat; Saeful Anwar; Rudi Kurniawan
Prosiding SISFOTEK Vol 9 No 1 (2025): SISFOTEK IX 2025
Publisher : Ikatan Ahli Informatika Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

Store sales forecasting based on historical data has been widely studied; however, most conventional approaches remain limited to single time series data and are less capable of capturing the complex influence of external factors. Existing knowledge suggests that deep learning can improve forecasting accuracy compared to traditional statistical methods, but what remains unclear is the extent to which multimodal integration—combining time series, economic, and categorical data—can enhance predictive performance in a dynamic retail context. This study aims to develop and evaluate a multimodal deep learning model using the Keras Functional API for store sales forecasting. The methodology involves collecting and processing daily transaction data, oil prices, holidays, and store information, followed by preprocessing, feature engineering, normalization, and time-window construction stages. Four architectures were tested—LSTM, 1D CNN, CNN+RNN, and Multiscale CNN—with performance evaluation conducted using Mean Absolute Error (MAE). The results indicate that multimodal integration yields a significant improvement compared to single-source data, with the 1D CNN model achieving the best performance at an MAE of 57,4318. The discussion highlights that integrating external variables such as oil prices and holidays enhances the robustness of predictions, while the main challenges remain in high computational requirements and limited model interpretability. This study concludes that the multimodal deep learning approach provides a scientific contribution by enriching the literature on sales forecasting while offering practical implications for the retail sector in inventory management, promotional planning, and data-driven decision-making.
Klasifikasi Tingkat Kesejahteraan Masyarakat Desa Cikuya Berdasarkan Data Sosial Ekonomi Menggunakan Algoritma Nive Bayes Ramdan Irawan; Rudi Kurniawan; Bani Nurhakim; Arif Rinaldi; Fathurrahman
Jurnal Sistem Informasi dan Teknologi Vol 6 No 1 (2026): Jurnal Sistem Informasi dan Teknologi (SINTEK)
Publisher : LPPM STMIK KUWERA

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.56995/sintek.v6i1.203

Abstract

Penentuan tingkat kesejahteraan masyarakat memiliki peran penting dalam proses penyaluran bantuan sosial di tingkat desa. Namun, pendataan berbasis observasi manual masih menghadirkan potensi bias subjektif dan ketidakkonsistenan dalam pengambilan keputusan. Penelitian ini bertujuan mengembangkan model klasifikasi tingkat kesejahteraan masyarakat Desa Cikuya menggunakan algoritma Naïve Bayes sebagai pendekatan berbasis data yang lebih objektif. Tahapan penelitian meliputi pengumpulan data sosial ekonomi, pra-pemrosesan, encoding variabel kategorik, normalisasi variabel numerik, pelatihan model Gaussian Naïve Bayes, serta evaluasi menggunakan metrik akurasi, precision, recall, dan f1-score. Hasil penelitian menunjukkan bahwa model menghasilkan akurasi sebesar 98,33%, yang menunjukkan performa klasifikasi yang sangat baik. Analisis lebih lanjut mengindikasikan bahwa variabel pendapatan dan kondisi fisik rumah memiliki peranan paling dominan dalam membedakan kategori kesejahteraan. Model yang dikembangkan tidak hanya berfungsi sebagai alat klasifikasi, tetapi juga dapat dimanfaatkan sebagai sistem pendukung keputusan bagi pemerintah desa untuk menilai status kesejahteraan masyarakat secara lebih cepat, konsisten, dan bebas bias subjektif. Penelitian ini memberikan kontribusi pada pemanfaatan teknologi pembelajaran mesin dalam pemetaan kesejahteraan masyarakat, meskipun masih memiliki keterbatasan pada jumlah variabel dan cakupan data lokal. Temuan ini diharapkan dapat menjadi dasar pengembangan sistem penyaluran bantuan yang lebih tepat sasaran dan transparan.
Evaluasi Pengaruh Kualitas Data Terhadap Performa Model Machine Learning Menggunakan Pendekatan Data-Centric AI Bisma Mahendra; Martanto; Denni Pratama; Ahmad Faqih; Rudi Kurniawan
Jurnal Sistem Informasi dan Teknologi Vol 6 No 1 (2026): Jurnal Sistem Informasi dan Teknologi (SINTEK)
Publisher : LPPM STMIK KUWERA

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.56995/sintek.v6i1.211

Abstract

Penelitian ini mengevaluasi pengaruh kualitas data terhadap performa model machine learning menggunakan pendekatan Data-Centric Artificial Intelligence (DCAI). Eksperimen dilakukan pada Titanic Dataset dengan membandingkan Random Forest dan Support Vector Machine (SVM) dalam tiga skenario penanganan missing values, yaitu Drop Missing, Mean Imputation, dan No Imputation. Kinerja model dievaluasi menggunakan metrik Accuracy, F1 Score, dan Area Under Curve (AUC). Hasil menunjukkan bahwa intervensi kualitas data memberikan dampak signifikan terhadap performa model. Random Forest mencapai performa terbaik pada skenario Drop Missing dengan Accuracy 0.813, F1-Score 0.758, dan AUC 0.859, sedangkan SVM memperoleh Accuracy tertinggi sebesar 0.822 pada skenario Mean Imputation. Uji statistik Paired t-Test menunjukkan tidak terdapat perbedaan performa yang signifikan secara statistik antara kedua model (p-value > 0.05). Temuan ini menegaskan bahwa peningkatan kualitas data lebih berpengaruh terhadap kinerja model dibandingkan pemilihan algoritma, sehingga mendukung paradigma Data-Centric AI.
Klasifikasi Tingkat Kesejahteraan Masyarakat Desa Cikuya Berdasarkan Data Sosial Ekonomi Menggunakan Algoritma Nive Bayes Ramdan Irawan; Rudi Kurniawan; Bani Nurhakim; Arif Rinaldi; Fathurrahman
Jurnal Sistem Informasi dan Teknologi Vol 6 No 1 (2026): Jurnal Sistem Informasi dan Teknologi (SINTEK)
Publisher : LPPM STMIK KUWERA

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.56995/sintek.v6i1.203

Abstract

Penentuan tingkat kesejahteraan masyarakat memiliki peran penting dalam proses penyaluran bantuan sosial di tingkat desa. Namun, pendataan berbasis observasi manual masih menghadirkan potensi bias subjektif dan ketidakkonsistenan dalam pengambilan keputusan. Penelitian ini bertujuan mengembangkan model klasifikasi tingkat kesejahteraan masyarakat Desa Cikuya menggunakan algoritma Naïve Bayes sebagai pendekatan berbasis data yang lebih objektif. Tahapan penelitian meliputi pengumpulan data sosial ekonomi, pra-pemrosesan, encoding variabel kategorik, normalisasi variabel numerik, pelatihan model Gaussian Naïve Bayes, serta evaluasi menggunakan metrik akurasi, precision, recall, dan f1-score. Hasil penelitian menunjukkan bahwa model menghasilkan akurasi sebesar 98,33%, yang menunjukkan performa klasifikasi yang sangat baik. Analisis lebih lanjut mengindikasikan bahwa variabel pendapatan dan kondisi fisik rumah memiliki peranan paling dominan dalam membedakan kategori kesejahteraan. Model yang dikembangkan tidak hanya berfungsi sebagai alat klasifikasi, tetapi juga dapat dimanfaatkan sebagai sistem pendukung keputusan bagi pemerintah desa untuk menilai status kesejahteraan masyarakat secara lebih cepat, konsisten, dan bebas bias subjektif. Penelitian ini memberikan kontribusi pada pemanfaatan teknologi pembelajaran mesin dalam pemetaan kesejahteraan masyarakat, meskipun masih memiliki keterbatasan pada jumlah variabel dan cakupan data lokal. Temuan ini diharapkan dapat menjadi dasar pengembangan sistem penyaluran bantuan yang lebih tepat sasaran dan transparan.
Evaluasi Pengaruh Kualitas Data Terhadap Performa Model Machine Learning Menggunakan Pendekatan Data-Centric AI Bisma Mahendra; Martanto; Denni Pratama; Ahmad Faqih; Rudi Kurniawan
Jurnal Sistem Informasi dan Teknologi Vol 6 No 1 (2026): Jurnal Sistem Informasi dan Teknologi (SINTEK)
Publisher : LPPM STMIK KUWERA

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.56995/sintek.v6i1.211

Abstract

Penelitian ini mengevaluasi pengaruh kualitas data terhadap performa model machine learning menggunakan pendekatan Data-Centric Artificial Intelligence (DCAI). Eksperimen dilakukan pada Titanic Dataset dengan membandingkan Random Forest dan Support Vector Machine (SVM) dalam tiga skenario penanganan missing values, yaitu Drop Missing, Mean Imputation, dan No Imputation. Kinerja model dievaluasi menggunakan metrik Accuracy, F1 Score, dan Area Under Curve (AUC). Hasil menunjukkan bahwa intervensi kualitas data memberikan dampak signifikan terhadap performa model. Random Forest mencapai performa terbaik pada skenario Drop Missing dengan Accuracy 0.813, F1-Score 0.758, dan AUC 0.859, sedangkan SVM memperoleh Accuracy tertinggi sebesar 0.822 pada skenario Mean Imputation. Uji statistik Paired t-Test menunjukkan tidak terdapat perbedaan performa yang signifikan secara statistik antara kedua model (p-value > 0.05). Temuan ini menegaskan bahwa peningkatan kualitas data lebih berpengaruh terhadap kinerja model dibandingkan pemilihan algoritma, sehingga mendukung paradigma Data-Centric AI.
Pengaruh Perputaran Kas, Piutang, Persediaan, Siklus Konversi Kas, dan Perputaran Aktiva Tetap Terhadap Profitabilitas pada Perusahaan Sub Sektor Farmasi yang Terdaftar di Bursa Efek Indonesia Periode 2020-2024 Tri, Kurnia; Rudi Kurniawan; Ayu Oktoriza, Linda; Puspitasari, Diana
El-Mal: Jurnal Kajian Ekonomi & Bisnis Islam Vol. 7 No. 1 (2026): El-Mal: Jurnal Kajian Ekonomi & Bisnis Islam
Publisher : Intitut Agama Islam Nasional Laa Roiba Bogor

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.47467/elmal.v7i1.10491

Abstract

This study aims to examine the effect of cash turnover, receivable turnover, inventory turnover, cash conversion cycle, and fixed asset turnover on profitability (ROA) in pharmaceutical subsector companies listed on the Indonesia Stock Exchange (IDX) from 2020 to 2024. The research seeks to understand how working capital efficiency and asset utilization contribute to improving a company’s financial performance, particularly in generating profits.A quantitative approach was applied using secondary data derived from the annual financial statements of pharmaceutical companies. The sample, selected through purposive sampling, consists of 13 companies with a total of 65 observations across five years. Data analysis involved descriptive statistics, classical assumption testing, and multiple linear regression using SPSS version 26 to evaluate the influence of each independent variable on profitability.The findings indicate that receivable turnover, inventory turnover, and the cash conversion cycle have a positive and significant effect on profitability. Meanwhile, cash turnover and fixed asset turnover show no significant influence. Simultaneously, all independent variables significantly affect profitability, with an R² value of 0.523, indicating that 52.3% of profitability variation is explained by the model. These results highlight that efficient management of receivables, inventory, and the cash conversion cycle plays a crucial role in enhancing profitability within the pharmaceutical sector.