Claim Missing Document
Check
Articles

Found 10 Documents
Search
Journal : Journal of Computer Networks, Architecture and High Performance Computing

The Use of K-Means Algorithm Clustering in Grouping Life Expectancy (Case Study: Provinces in Indonesia) Nugraha, Dimas Reza; Zy, Ahmad Turmudi; Sunge, Aswan Supriyadi
Journal of Computer Networks, Architecture and High Performance Computing Vol. 6 No. 3 (2024): Articles Research Volume 6 Issue 3, July 2024
Publisher : Information Technology and Science (ITScience)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.47709/cnahpc.v6i3.4171

Abstract

Life expectancy is defined as information that illustrates the age of the death of a population. Life expectancy is a general picture of the state of a region. If the infant mortality rate is high, then the life expectancy in the area is low. And vice versa, if the infant mortality rate is low, the life expectancy in the region is high. Life expectancy is also a benchmark for government actions in improving the welfare of society and the human development index. For this reason, it is necessary to group life expectancy data to make it easier to determine the provinces with high, middle, and low life expectancy. The results of cluster testing using the silhouette score method showed that two subjects had a low silhouette score level, which caused the cluster value to be less than optimal, namely East Java  & Gorontalo. The clustering results found that the cluster was divided into 3, namely cluster 1, with a high level of life expectancy consisting of 10 provinces, namely East Java, Riau, North Sulawesi, Bali, North Kalimantan, DKI Jakarta, West Java, Central Java, East Kalimantan and Special Region of Yogyakarta. Cluster 2 has a level of middle-life expectancy consisting of 18 provinces, namely Gorontalo, North Maluku, Central Sulawesi, South Kalimantan, North Sumatra, Bengkulu, West Sumatra, Central Kalimantan, Aceh, South Sumatra, Banten, Kep. Riau, South Sulawesi, Kep. Bangka Belitung, Lampung, West Kalimantan, Southeast Sulawesi and Jambi. Cluster 3, with a low level of life expectancy, consists of 6 provinces, namely West Sulawesi, Papua, Maluku, West Papua, West Nusa Tenggara, and East Nusa Tenggara.
Analysis of Manual and Automated Methods Effectiveness in Website Penetration Testing for Identifying SQL Injection Vulnerabilities Anaoval, Abdul Aziz; Zy, Ahmad Turmudi; S, Suherman
Journal of Computer Networks, Architecture and High Performance Computing Vol. 6 No. 3 (2024): Articles Research Volume 6 Issue 3, July 2024
Publisher : Information Technology and Science (ITScience)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.47709/cnahpc.v6i3.4249

Abstract

This research aims to identify vulnerabilities to SQL Injection attacks on websites through penetration testing using quantitative and descriptive methods. In the current digital era, data and information security has become a crucial aspect. One of the frequent threats is SQL Injection attacks, where attackers insert malicious SQL commands into queries executed by web applications. This study utilizes tools such as Burp Suite to identify and exploit vulnerabilities in a login form created by the researchers. The research process begins with the Pre-Engagement Interactions phase, which includes information gathering and setting the testing scope. Subsequently, Vulnerability Testing is conducted to evaluate existing weaknesses. The exploitation of vulnerabilities is performed using the 'OR'1'='1 technique, which successfully demonstrates that the website is vulnerable to SQL Injection attacks. The results of this study indicate that the login form on the website is susceptible to SQL Injection due to insufficient input validation and the use of dynamic SQL queries without prepared statements. Implementing stricter input validation techniques and using prepared statements has proven effective in enhancing website security. This research makes a significant contribution to the field of information system security, particularly in the prevention of SQL Injection attacks. The results of this study can serve as a practical guide for web developers in improving the security of their applications and provide a deeper understanding of the threats and mitigation techniques for SQL Injection.
The Analysis of Product Sales in the Application of Data Mining with Naive Bayes Classification Zahri, M. Hannata; Sunge, Aswan S.; Zy, Ahmad Turmudi
Journal of Computer Networks, Architecture and High Performance Computing Vol. 6 No. 3 (2024): Articles Research Volume 6 Issue 3, July 2024
Publisher : Information Technology and Science (ITScience)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.47709/cnahpc.v6i3.4255

Abstract

H&F Shoe Store is a privately owned Micro, Small, and Medium Enterprises retail store that sells merchandise. The owner serves customers directly and also acts as a cashier. In this store, the business owner is less aware of what types or categories of products are most in demand by customers, making sales operations less than optimal. Because of this, special expertise is needed to handle the problems in the retail store, namely data mining or Data Mining with the aim of digging up information related to sales problems, in this case the author will use the Classification method with the Naive Bayes algorithm. In this study, the author uses secondary data obtained from sales notebooks and re-collected into Microsoft Excel according to research needs. The data that has been collected on the software is 121 data which have 10 attributes, namely “Nama Produk”, “Size Produk”, “Kategori Produk”, “Jenis Produk”, “Gender Produk”, “Merek Produk”, “Stok Awal”, “Stok Terjual”, “Stok Sisa”, and “Penjualan”. The Naive Bayes Classifier method has successfully produced good results in classifying sales on a type or category of marketed products, the results obtained are in the form of product sales analysis and Naive Bayes model evaluation values. The results of the model evaluation values on the Confusion Matrix obtained are accuracy of 86.11%, recall of 84.62% and precision of 84.62%.
Sentiment Analysis of Dune: Part Two Movie Reviews Using the Naive Bayes Method Maheswari, Diyan Arum; Zy, Ahmad Turmudi; Afriantoro, Irfan
Journal of Computer Networks, Architecture and High Performance Computing Vol. 6 No. 4 (2024): Articles Research October 2024
Publisher : Information Technology and Science (ITScience)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.47709/cnahpc.v6i4.4604

Abstract

Research on films is fascinating because of the profound changes that the development of information and communication technology has brought about in our interactions with and consumption of media content. This study performs sentiment analysis on "Dune: Part Two" movie reviews using the Naïve Bayes method. Review data was collected from IMDb and then processed through several stages such as preprocessing, feature selection with TF-IDF, data splitting, and data mining and evaluation. Naïve Bayes was chosen for its simplicity and ability to handle large datasets effectively. The test results showed a high accuracy rate of 95%, indicating that this model can identify positive, negative, and neutral sentiments well. The use of TF-IDF in feature selection allowed the model to focus on important words, enhancing its sentiment classification ability. This research can provide insights into audience perceptions of the film "Dune: Part Two," which is beneficial for the film industry.
Comparative Analysis of Earthquake Prediction with SVM, Naïve Bayes, and K-Means Models: Comparative Analysis of Earthquake Prediction with SVM, Naïve Bayes, and K-Means Models Muttaqin, Ahmad Fadhiil; Sunge, Aswan Supriyadi; Zy, Ahmad Turmudi
Journal of Computer Networks, Architecture and High Performance Computing Vol. 7 No. 1 (2025): Article Research January 2025
Publisher : Information Technology and Science (ITScience)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.47709/cnahpc.v7i1.5085

Abstract

Earthquakes are natural disasters with significant impacts on people and the environment, so effective methods for prediction are needed to improve preparedness and risk mitigation. This study analyzes the performance of three algorithms Support Vector Machine (SVM), Naïve Bayes, and K-Means in predicting earthquakes in Indonesia using a dataset containing 4,645 historical data from BMKG processed through preprocessing, data separation, analysis, and performance evaluation with RapidMiner tools. The results show that SVM has the best performance with 99.87% accuracy, 99.83% precision, and 95.61% recall, making it highly relevant for earthquake prediction. Naïve Bayes achieved 90.31% accuracy and 95.08% recall, but the low precision (57.24%) shows the limitations of this model. K-Means successfully clusters earthquakes into two categories: small (3,661 data) and large (55 data) earthquakes, with a Davies-Bouldin Index value of 0.579, reflecting good clustering quality. Based on these results, SVM is recommended as a superior earthquake prediction model, while Naïve Bayes and K-Means are more suitable for additional analysis. This approach confirms the potential of machine learning algorithms in supporting future earthquake risk mitigation.
The Use of K-Means Algorithm Clustering in Grouping Life Expectancy (Case Study: Provinces in Indonesia) Nugraha, Dimas Reza; Zy, Ahmad Turmudi; Sunge, Aswan Supriyadi
Journal of Computer Networks, Architecture and High Performance Computing Vol. 6 No. 3 (2024): Articles Research Volume 6 Issue 3, July 2024
Publisher : Information Technology and Science (ITScience)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.47709/cnahpc.v6i3.4171

Abstract

Life expectancy is defined as information that illustrates the age of the death of a population. Life expectancy is a general picture of the state of a region. If the infant mortality rate is high, then the life expectancy in the area is low. And vice versa, if the infant mortality rate is low, the life expectancy in the region is high. Life expectancy is also a benchmark for government actions in improving the welfare of society and the human development index. For this reason, it is necessary to group life expectancy data to make it easier to determine the provinces with high, middle, and low life expectancy. The results of cluster testing using the silhouette score method showed that two subjects had a low silhouette score level, which caused the cluster value to be less than optimal, namely East Java  & Gorontalo. The clustering results found that the cluster was divided into 3, namely cluster 1, with a high level of life expectancy consisting of 10 provinces, namely East Java, Riau, North Sulawesi, Bali, North Kalimantan, DKI Jakarta, West Java, Central Java, East Kalimantan and Special Region of Yogyakarta. Cluster 2 has a level of middle-life expectancy consisting of 18 provinces, namely Gorontalo, North Maluku, Central Sulawesi, South Kalimantan, North Sumatra, Bengkulu, West Sumatra, Central Kalimantan, Aceh, South Sumatra, Banten, Kep. Riau, South Sulawesi, Kep. Bangka Belitung, Lampung, West Kalimantan, Southeast Sulawesi and Jambi. Cluster 3, with a low level of life expectancy, consists of 6 provinces, namely West Sulawesi, Papua, Maluku, West Papua, West Nusa Tenggara, and East Nusa Tenggara.
Analysis of Manual and Automated Methods Effectiveness in Website Penetration Testing for Identifying SQL Injection Vulnerabilities Anaoval, Abdul Aziz; Zy, Ahmad Turmudi; S, Suherman
Journal of Computer Networks, Architecture and High Performance Computing Vol. 6 No. 3 (2024): Articles Research Volume 6 Issue 3, July 2024
Publisher : Information Technology and Science (ITScience)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.47709/cnahpc.v6i3.4249

Abstract

This research aims to identify vulnerabilities to SQL Injection attacks on websites through penetration testing using quantitative and descriptive methods. In the current digital era, data and information security has become a crucial aspect. One of the frequent threats is SQL Injection attacks, where attackers insert malicious SQL commands into queries executed by web applications. This study utilizes tools such as Burp Suite to identify and exploit vulnerabilities in a login form created by the researchers. The research process begins with the Pre-Engagement Interactions phase, which includes information gathering and setting the testing scope. Subsequently, Vulnerability Testing is conducted to evaluate existing weaknesses. The exploitation of vulnerabilities is performed using the 'OR'1'='1 technique, which successfully demonstrates that the website is vulnerable to SQL Injection attacks. The results of this study indicate that the login form on the website is susceptible to SQL Injection due to insufficient input validation and the use of dynamic SQL queries without prepared statements. Implementing stricter input validation techniques and using prepared statements has proven effective in enhancing website security. This research makes a significant contribution to the field of information system security, particularly in the prevention of SQL Injection attacks. The results of this study can serve as a practical guide for web developers in improving the security of their applications and provide a deeper understanding of the threats and mitigation techniques for SQL Injection.
The Analysis of Product Sales in the Application of Data Mining with Naive Bayes Classification Zahri, M. Hannata; Sunge, Aswan S.; Zy, Ahmad Turmudi
Journal of Computer Networks, Architecture and High Performance Computing Vol. 6 No. 3 (2024): Articles Research Volume 6 Issue 3, July 2024
Publisher : Information Technology and Science (ITScience)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.47709/cnahpc.v6i3.4255

Abstract

H&F Shoe Store is a privately owned Micro, Small, and Medium Enterprises retail store that sells merchandise. The owner serves customers directly and also acts as a cashier. In this store, the business owner is less aware of what types or categories of products are most in demand by customers, making sales operations less than optimal. Because of this, special expertise is needed to handle the problems in the retail store, namely data mining or Data Mining with the aim of digging up information related to sales problems, in this case the author will use the Classification method with the Naive Bayes algorithm. In this study, the author uses secondary data obtained from sales notebooks and re-collected into Microsoft Excel according to research needs. The data that has been collected on the software is 121 data which have 10 attributes, namely “Nama Produk”, “Size Produk”, “Kategori Produk”, “Jenis Produk”, “Gender Produk”, “Merek Produk”, “Stok Awal”, “Stok Terjual”, “Stok Sisa”, and “Penjualan”. The Naive Bayes Classifier method has successfully produced good results in classifying sales on a type or category of marketed products, the results obtained are in the form of product sales analysis and Naive Bayes model evaluation values. The results of the model evaluation values on the Confusion Matrix obtained are accuracy of 86.11%, recall of 84.62% and precision of 84.62%.
Sentiment Analysis of Dune: Part Two Movie Reviews Using the Naive Bayes Method Maheswari, Diyan Arum; Zy, Ahmad Turmudi; Afriantoro, Irfan
Journal of Computer Networks, Architecture and High Performance Computing Vol. 6 No. 4 (2024): Articles Research October 2024
Publisher : Information Technology and Science (ITScience)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.47709/cnahpc.v6i4.4604

Abstract

Research on films is fascinating because of the profound changes that the development of information and communication technology has brought about in our interactions with and consumption of media content. This study performs sentiment analysis on "Dune: Part Two" movie reviews using the Naïve Bayes method. Review data was collected from IMDb and then processed through several stages such as preprocessing, feature selection with TF-IDF, data splitting, and data mining and evaluation. Naïve Bayes was chosen for its simplicity and ability to handle large datasets effectively. The test results showed a high accuracy rate of 95%, indicating that this model can identify positive, negative, and neutral sentiments well. The use of TF-IDF in feature selection allowed the model to focus on important words, enhancing its sentiment classification ability. This research can provide insights into audience perceptions of the film "Dune: Part Two," which is beneficial for the film industry.
Comparative Analysis of Earthquake Prediction with SVM, Naïve Bayes, and K-Means Models: Comparative Analysis of Earthquake Prediction with SVM, Naïve Bayes, and K-Means Models Muttaqin, Ahmad Fadhiil; Sunge, Aswan Supriyadi; Zy, Ahmad Turmudi
Journal of Computer Networks, Architecture and High Performance Computing Vol. 7 No. 1 (2025): Article Research January 2025
Publisher : Information Technology and Science (ITScience)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.47709/cnahpc.v7i1.5085

Abstract

Earthquakes are natural disasters with significant impacts on people and the environment, so effective methods for prediction are needed to improve preparedness and risk mitigation. This study analyzes the performance of three algorithms Support Vector Machine (SVM), Naïve Bayes, and K-Means in predicting earthquakes in Indonesia using a dataset containing 4,645 historical data from BMKG processed through preprocessing, data separation, analysis, and performance evaluation with RapidMiner tools. The results show that SVM has the best performance with 99.87% accuracy, 99.83% precision, and 95.61% recall, making it highly relevant for earthquake prediction. Naïve Bayes achieved 90.31% accuracy and 95.08% recall, but the low precision (57.24%) shows the limitations of this model. K-Means successfully clusters earthquakes into two categories: small (3,661 data) and large (55 data) earthquakes, with a Davies-Bouldin Index value of 0.579, reflecting good clustering quality. Based on these results, SVM is recommended as a superior earthquake prediction model, while Naïve Bayes and K-Means are more suitable for additional analysis. This approach confirms the potential of machine learning algorithms in supporting future earthquake risk mitigation.