Claim Missing Document
Check
Articles

Found 4 Documents
Search
Journal : Pelita Teknologi : Jurnal Ilmiah Informatika, Arsitektur dan Lingkungan

A IMPLEMENTASI TERM FREQUENCY – INVERSE DOCUMENT FREQUENCY (TF-IDF) DAN VECTOR SPACE MODEL (VSM) UNTUK PENCARIAN BERITA BAHASA INDONESIA Wiyanto W; Wowon Priatna; Jumi Saroh Hidayat
Jurnal Pelita Teknologi Vol 14 No 2 (2019): September 2019
Publisher : DPPM Universitas Pelita Bangsa

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.37366/pelitatekno.v14i2.237

Abstract

A search engine that already exists and widely used today can be provide the result of information very much, so it takes time to sort through the information in need. The research with the title "The “implementation term frequency-inverse document frequency (TF-IDF) and vector space model (VSM) to search a news of Indonesian language” have a purpose to develop the method of quick search uses TF-IDF method and vector space model. There are two main processes in the search system of news that are indexing and retrieval. The process of indexing is a process to give assessment to the words on document, the method of assessment in this research uses an assessment of method TF-IDF. The process of retrieval is a process of calculating the slope of the query against the document, the calculation of the similarity using concept vector space model by finding the value of cosine similarity. Based on the analysis and implementation in the build of search system in the news. The quick method of search can be built using vector space model. The system build by this method of vector is able to display a results of search that relevant accordance with the query in the user input. Keywords: term frequency - inverse document frequency, vector space model, search a news of Indonesian language, indexing, retrieval.
Pengelompakan Hasil Survei Merdeka Belajar Kampus Merdeka Di Universitas Bhayangkara Jakarta Raya Menggunakan Kmean Dan K-Medoids Clustering Mayadi; Siti Setiawati; Wowon Priatna
Jurnal Pelita Teknologi Vol 17 No 2 (2022): September 2022
Publisher : DPPM Universitas Pelita Bangsa

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.37366/pelitatekno.v17i2.1531

Abstract

The goal of this study is to categorize the findings of a survey on the application of the MBKM policy that DIKTI performed via universities that had been awarded research funding. The survey results have not been categorized, making it difficult for the institution to determine if the MBKM policy has been implemented in accordance with the MBKM standards released by the Higher Education. The K-Mean and K-Medoids Algorithms are used in this study technique to solve data grouping issues and validate clustering outcomes using the Davies-Bouldin Index (DBI). 400 data points total were processed from 16 variables in this investigation. The findings of this investigation were tested using several clusters. After analyzing clusters using DBI, the K-Mean algorithm discovered that cluster 5 had K-Medoids of 0.9 and a value of 0.823. Therefore, it is advised to employ 5 clusters with the K-Mean Algorithm for grouping data from the MBKM survey findings.
Crawling Engine Pada Website Mann, Baldwin, Fleetguard Dan Pengelompokan Produk Menggunakan K-Means Rahman, Andi; Priatna, Wowon; Lestari, Tyastuti Sri; Hidayat, Agus
Jurnal Pelita Teknologi Vol 19 No 2 (2024): September 2024
Publisher : Universitas Pelita Bangsa

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

Tujuan penelitian ini adalah untuk mengelompokan produk pada beberapa web site. Dalam crawling engine akan sangat membantu dalam memasukan data produk secara otomatis mengambil data dari website produk tersebut, kemudian di input dalam aplikasi Odoo. Algoritma k-means klustering sendiri adalah algoritma mengelompokkan pengamatan ke dalam kelompok k, di mana k merupakan parameter input. Tiap data kemudian ditetapkan pada setiap pengamatan cluster berdasarkan kedekatan pengamatan nilai rata-rata cluster. Pengelompokan ini akan sangat membantu dalam klasifikasi produk berdasarkan cross reference. Hasil dari penelitian ini adalah produk produk terinput secara otomatis dan data sesuai dengan website produk tersebut dan produk terkelompok sesuai dengan cross reference.
Implementasi Algoritma Naïve Bayes dan Algoritma C4.5 Untuk Melakukan Analisis Sentimen terhadap Ulasan Komentar Pengguna TikTok di Google Play Store Aprilyana, Dhea Putri; Priatna, Wowon; Setiawati, Siti
Jurnal Pelita Teknologi Vol 19 No 1 (2024): Maret 2024
Publisher : Universitas Pelita Bangsa

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.37366/pelitatekno.v19i1.2488

Abstract

TikTok is a popular application among young people. TikTok was an application initially launched in China before landing in Indonesia at the end of 2017. Unfortunately, the popularity of TikTok stems from personal lack of self-image, for example wearing sexy clothes, dancing in erotic and inappropriate moves. This is based on many positive and negative comments from TikTok users. So we need a way to automatically classify reviews through sentiment analysis. The purpose of this study is to classify TikTok user comments on Google Play Store using Naive Bayes and C4.5 algorithms. This study used 1330 data, of which 602 data were negative and 728 data were positive. The results show that the Naive Bayes algorithm produces accuracy values ​​of 79.00%, 79.00% precision, 78.00% recall, and 78.00% F1 score. The C4.5 algorithm produces 68.00% accuracy, 68.00% precision, 68.00% recall, and 68.00% F1 score. We can conclude that the Naive Bayes algorithm is the best algorithm compared to the C4.5 algorithm. The Naive Bayes algorithm achieves an accuracy value of 79.00%.
Co-Authors -, Rasim ., Rasim Ade Iriani Adi Setiawan Agung Nugroho Agung Nugroho Agus Hidayat Agus Hidayat Aida Fitriyani, Aida Ajif Yunizar Pratama Yusuf Alexander, Allan D Alexander, Allan D. Alhillah, Yumaris Alfi Andi Lawrence Hutahaean, Johanes Andi Rahman Andri Fajriya Annisa Oktavianti Hermadi Aprilyana, Dhea Putri Asep R. Hamdani Asep Ramdhani M Asep Ramdhani Mahbub Atika , Prima Dina Danny Manongga Dimas Abimanyu Prasetyo Dwi Budi Srisulistiowati Dwipa Handayani Eka Nur A’ini Endang Retnoningsih Enggar Putera, dkk, Diaz Evi Maria Fadjriya, Andry Faisal Adi Saputra Fajar Mukharom Fathurrazi, Ahmad Febry Sandrian Sagala Fefbiansyah Hasibuan Galih Apriansha Pradana Hadi Kusmara Hamdani, Asep R. Hendarman Lubis Herlawati Herlawati Hindriyanto Dwi Purnomo Ikhsan Romli Ilham Rizky Widianto Irwan Sembiring Ismaniah, Ismaniah Iwan Setyawan Joni Warta Joni Warta Joniwarta Joniwarta Jumi Saroh Hidayat Kapriadi, Engkap Karyaningsih, Dentik Khoirunnisaa, Nabiilah Kustanto , Prio Lestari, Tyastuti Sri Lubis, Hendarman M. Fadhli Nursal Mahbub, Asep Ramdhani Mayadi Mayadi Mayadi, Mayadi Meutia, Kardinah Indrianna Mugiarso Mugiarso, Mugiarso Muhammad Khaerudin Noe’man,, Achmad Nurjeli Nurjeli Pradana , Galih Apriansha Prima Dina Atika Purnomo , Rakhmat Purnomo, Rakhmat Purnomo, Rakhmat Putra , Tri Dharma Rahmadya Trias Handayanto Rakhmat Purnomo Rasim Rejeki , Sri Retnoningsih , Endang Rinaldi Tunnisia Ritzkal, Ritzkal Sagala, Febry Sandrian Saputra , Faisal Adi Silvi - Siti Setiawati Siti Setiawati SITI SETIAWATI Siti Setiawati, Andika Yusuf Hidayat Sri Lestari, Tyastuti Sri Rejeki Sri Yulianto Joko Prasetyo Sudiantini, Dian Sulistiyo, Dwi Suryadi Sutarto Wijono Syahbaniar Rofiah Tb Ai Munandar, Tb Ai Theopillus J. H. Wellem Tri Dharma Putra Tri Dharma Putra Tyastuti Sri Lestari Tyastuti Sri Lestari Tyastuti Sri Lestari Tyastuti Sri Lestari Widianto, Ilham Rizky Wiyanto Wiyanto