Claim Missing Document
Check
Articles

Genetic Algorithm for Relational Database Optimization in Reducing Query Execution Time Hidayat, Kukuh Triyuliarno; Arifudin, Riza; Alamsyah, Alamsyah
Scientific Journal of Informatics Vol 5, No 1 (2018): May 2018
Publisher : Universitas Negeri Semarang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.15294/sji.v5i1.12720

Abstract

The relational database is defined as the database by connecting between tables. Each table has a collection of information. The information is processed in the database by using queries, such as data retrieval, data storage, and data conversion. If the information in the table or data has a large size, then the query process to process the database becomes slow. In this paper, Genetic Algorithm is used to process queries in order to optimize and reduce query execution time. The results obtained are query execution with genetic algorithm optimization to show the best execution time. The genetic algorithm processes the query by changing the structure of the relation and rearranging it. The fitness value generated from the genetic algorithm becomes the best solution. The fitness used is the highest fitness of each experiment results. In this experiment, the database used is  MySQL sample database which is named as employees. The database has a total of over 3,000,000 rows in 6 tables. Queries are designed by using 5 relations in the form of a left deep tree. The execution time of the query is 8.14247 seconds and the execution time after the optimization of the genetic algorithm is 6.08535 seconds with the fitness value of 0.90509. The time generated after optimization of the genetic algorithm is reduced by 25.3%. It shows that genetic algorithm can reduce query execution time by optimizing query in the part of relation. Therefore, query optimization with genetic algorithm can be an alternative solution and can be used to maximize query performance.
K-Nearest Neighbor and Naive Bayes Classifier Algorithm in Determining The Classification of Healthy Card Indonesia Giving to The Poor Safri, Yofi Firdan; Arifudin, Riza; Muslim, Much Aziz
Scientific Journal of Informatics Vol 5, No 1 (2018): May 2018
Publisher : Universitas Negeri Semarang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.15294/sji.v5i1.12057

Abstract

Health is a human right and one of the elements of welfare that must be realized in the form of giving various health efforts to all the people of Indonesia. Poverty in Indonesia has become a national problem and even the government seeks efforts to alleviate poverty. For example, poor families have relatively low levels of livelihood and health. One of the new policies of the Sakti Government Card Program issued by the government includes three cards, namely Indonesia Smart Card (KIP), Healthy Indonesia Card (KIS) and Prosperous Family Card (KKS). In this study to determine the feasibility of a healthy Indonesian card (KIS) required a method of optimal accuracy. The data used in this study is KIS data which amounts to 200 data records with 15 determinants of feasibility in 2017 taken at the Social Service of Pekalongan Regency. The data were processed using the K-Nearest Neighbor algorithm and the combination of K-Nearest Neighbor-Naive Bayes Classifier algorithm. This can be seen from the accuracy of determining the feasibility of K-Nearest Neighbor algorithm of 64%, while the combination of K-Nearest Neighbor-Naive Bayes Classifier algorithm is 96%, so the combination of K-Nearest Neighbor-Naive Bayes Classifier algorithm is the optimal algorithm in determining the feasibility of healthy Indonesian card recipients with an increase of 32% accuracy. This study shows that the accuracy of the results of determining feasibility using a combination of K-Nearest Neighbor-Naive Bayes Classifier algorithms is better than the K-Nearest Neighbor algorithm.
Information Retrieval System for Determining The Title of Journal Trends in Indonesian Language Using TF-IDF and Na?ve Bayes Classifier Trihanto, Wandha Budhi; Arifudin, Riza; Muslim, Much Aziz
Scientific Journal of Informatics Vol 4, No 2 (2017): November 2017
Publisher : Universitas Negeri Semarang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.15294/sji.v4i2.11876

Abstract

The journal is known as one of the relevant serial literature that can support a researcher in doing his research. In its development journal has two formats that can be accessed by library users namely: printed format and digital format. Then from the number of published journals, not accompanied by the growing amount of information and knowledge that can be retrieved from these documents. The TF-IDF method is one of the fastest and most efficient text mining methods to extract useful words as the value of information from a document. This method combines two concepts of weight calculation that is the frequency of word appearance on a particular document and the inverse frequency of documents containing the word. Furthermore, data analysis of journal title is done by Nave Bayes Classifier method. The purpose of the research is to build a website-based information retrieval system that can help to classify and define trends from Indonesian journal titles. This research produces a system that can be used to classify journal titles in Indonesian language, with system accuracy in determining the classification of 90,6% and 9,4% error rate. The highest percentage result that became the trend of title classification was decision support system category which was 24.7%.
Autocomplete and Spell Checking Levenshtein Distance Algorithm To Getting Text Suggest Error Data Searching In Library Yulianto, Muhamad Maulana; Arifudin, Riza; Alamsyah, Alamsyah
Scientific Journal of Informatics Vol 5, No 1 (2018): May 2018
Publisher : Universitas Negeri Semarang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.15294/sji.v5i1.14148

Abstract

Nowadays internet technology provide more convenience for searching information on a daily. Users are allowed to find and publish their resources on the internet using search engine. Search engine is a computer program designed to facilitate a user to find the information or data that they need. Search engines generally find the data based on keywords they entered, therefore a lot of case when the user can’t find the data that they need because there are an error while entering a keyword. Thats why a search engine with the ability to detect the entered words is required so the error can be avoided while we search the data. The feature that used to provide the text suggestion is autocomplete and spell checking using Levenshtein distance algorithm. The purpose of this research is to apply the autocomplete feature and spell checking with Levenshtein distance algorithm to get text suggestion in an error data searching in library and determine the level of accuracy on data search trials. This research using 1155 data obtained from UNNES Library. The variables are the input process and the classification of books. The accuracy of Levenshtein algorithm is 86% based on 1055 source case and 100 target case.
Meningkatkan Kemampuan Berpikir Kreatif Siswa Melalui Pembelajaran Model Taba Berbantuan Geometer’s Sketchpad Utami, Amalia Fikri; Masrukan, Masrukan; Arifudin, Riza
Kreano, Jurnal Matematika Kreatif-Inovatif Vol 5, No 1 (2014): Kreano, Jurnal Matematika Kreatif-Inovatif
Publisher : Jurusan Matematika, Fakultas Matematika dan Ilmu Pengetahuan Alam, Universitas Negeri Sema

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.15294/kreano.v5i1.3279

Abstract

AbstrakPenelitian ini bertujuan untuk mengetahui peningkatan kemampuan berpikir kreatif siswa melalui pembelajaran model Taba berbantuan Geometer’s Sketchpad (GSP) pada materi segiempat. Desain penelitian yang digunakan adalah the non-equivalent control group de-sign yang merupakan bagian dari kuasi eksperimen. Populasi dalam penelitian ini adalah siswa kelas VII SMP N 1 Jepara tahun pelajaran 2012/2013. Hasil penelitian menunjuk-kan: (1) kemampuan berpikir kreatif siswa pada kelas eksperimen 1 dan kelas eksperimen 2 mencapai ketuntasan belajar klasikal; (2) terdapat perbedaan kemampuan berpikir kreatif siswa pada kelas eksperimen 1, kelas eksperimen 2, dan kelas kontrol; dan (3) pada kelas eksperi-men 1 terdapat peningkatan kemampuan berpikir kreatif siswa pada materi segiempat de-ngan kategori sedang. Dari penelitian yang telah dilakukan dapat disimpulkan bahwa pem-belajaran model Taba berbantuan GSP dapat meningkatkan kemampuan berpikir kreatif siswa pada materi segiempat. Kata kunci:      Geometer’s Sketchpad (GSP); Kemampuan Berpikir Kreatif; Model Pembelajaran Taba  AbstractThis research aimed to increase students' creative thinking ability through the Taba learning model assisted by Geometer's Sketchpad (GSP) in quadrilateral material. Research design that used is the non-equivalent control group design, part of a quasi-experiment. The population in this research were students of grade VII SMP N 1 Jepara 2012/2013 academic year. The results showed: (1) the creative thinking ability of students in the 1st experimental class and the 2nd experimental class could achieve classical minimum mastery criteria; (2) there is a difference in the students' creative thinking ability among the 1st experimental class, the 2nd experimental class, and the control class; and (3) in the 1st experimental class there is an increase in students' creative thinking ability with medium category. The conclusion of this experiment is the Taba learning model assisted by GSP can increase students’ creative thinking ability. Keywords: Creative Thinking Ability; Geometer’s Sketchpad (GSP); The Taba Learning Model 
The Comparison Combination of Naïve Bayes Classification Algorithm with Fuzzy C-Means and K-Means for Determining Beef Cattle Quality in Semarang Regency Devi, Feroza Rosalina; Sugiharti, Endang; Arifudin, Riza
Scientific Journal of Informatics Vol 5, No 2 (2018): November 2018
Publisher : Universitas Negeri Semarang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.15294/sji.v5i2.15452

Abstract

The beef cattle quality certainly affects the quality of meat to be consumed. This researchperforms data processing to do the classification of beef cattle quality. The data used are196 data record taken from data in 2016 and 2017. The data have 3 variables fordetermining the quality of beef cattle in Semarang regency namely age (month), Weight(Kg), and Body Condition Score (BCS) . In this research, used the combination of NaïveBayes Classification and Fuzzy C-Means algorithm also Naïve Bayes Classification andK-Means. After doing the combinations, then conducted analysis of the results of whichtype of combination that has a high accuracy. The results of this research indicate that theaccuracy of combination Naïve Bayes Classification and K-Means has a higher accuracythan the combination of Naïve Bayes Classification and Fuzzy C-Means. This can be seenfrom the combination accuracy of Fuzzy C-Means algorithm and Naïve Bayes Classifierof 96,67 while combination of K Means Clustering and Naïve Bayes Classifier algorithmis 98,33%, so it can be concluded that combination of K Means Clustering algorithm andNaïve Bayes Classifier is more recommended for determining the quality of beef cattle inSemarang regency.
Use of K-Means Clustering and Analytical Methods Hierarchy Process in Determining the Type of MSME Financing in Semarang City Sukmadewanti, Irahayu; Arifudin, Riza; Sugiharti, Endang
Scientific Journal of Informatics Vol 5, No 2 (2018): November 2018
Publisher : Universitas Negeri Semarang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.15294/sji.v5i2.16221

Abstract

The Indonesian government launched an entrepreneurial program to encourage economic growth, one of which is MSME(micro, small and medium enterprises). The constraints commonly faced by MSME are limited enterprises capital. The government has also tried to provide assistance financing for MSMEs in the form of CSR (Corporate Social Responsibility), KUR (Credit Peoples Enterprises) and KTA (Unsecured Credit). For this type of financing or credit determined based on the type of enterprises accompanied by criteria including number of assets, turnover annually, number of employees, current enterprises period and net income. Based on background behind this research aims to help provide recommendations on types MSME capital financing based on assets, turnover, number of employees, enterprises period and net income of a MSME. This research uses data from MSME in the Semarang City, which has been registered with the Semarang City Cooperatives and MSME Office. K-Means Clustering Method is used to cluster net profit criteria. Then the Analytical Hierarchy Process (AHP) method is used to search recommendations on the types of MSME financing based on each weighted criteria. The results of this application are recommendations for types of capital financing MSME is based on assets, turnover, number of employees, enterprises period and every net profit of MSME. For testing of the system being built, it is carried out by means of a blackbox test. From the test results obtained show that the actual results are appropriate with the expected results so that the functional system is running well. Suggestions from this research, it is necessary to develop further systems regarding grouping data to be more specific.
The Comparison between Bayes and Certainty Factor Method of Expert System in Early Diagnosis of Dengue Infection Rachmawati, Eka Yuni; Prasetiyo, Budi; Arifudin, Riza
Scientific Journal of Informatics Vol 5, No 2 (2018): November 2018
Publisher : Universitas Negeri Semarang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.15294/sji.v5i2.15740

Abstract

The development of existing artificial intelligence technology has been widely applied in detecting diseases using expert systems. Dengue Infection is one of the diseases that is commonly suffered by the community and may cause in death. In this study, an expert diagnosis system for dengue infection is made by comparing between both Bayes method and Certainty Factor. The aims are to build an expert system using Bayes and Certainty Factor for early diagnosis of dengue infection and also to determine their level of accuracy. There are 80 data used in this study which are obtained from the medical records of Sekaran Health Center in Semarang City. The test results show that the level of accuracy obtained from 80 medical record data for Bayes method is 90% and the Certainty Factor method is 93,75%.
Security Login System on Mobile Application with Implementation of Advanced Encryption Standard (AES) using 3 Keys Variation 128-bit, 192-bit, and 256-bit Utami, Hamdan Dian Jaya Rozi Hyang; Arifudin, Riza; Alamsyah, Alamsyah
Scientific Journal of Informatics Vol 6, No 1 (2019): Mei 2019
Publisher : Universitas Negeri Semarang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.15294/sji.v6i1.17589

Abstract

The development of mobile applications is unbalanced with the level of its security which is vulnerable to hacker attacks. Some important things that need to be considered in the security of mobile applications are login and database system. A login system that used the database as user authentication and passwords are very vulnerable to be hacking. In securing data, various ways had been developed including cryptography. Cryptographic algorithms used in securing passwords usually used MD5 encryption. However, MD5 as a broader encryption technique is very risky. Therefore, the level of login system security in an android application is needed to embed the Advanced Encryption Standard (AES) algorithm in its process. The AES algorithm was applied using variations of 3 keys 128-bit, 192-bit, and 256-bit. Security level testing was also conducted by using 40 SQL Injection samples which the system logins without security obtained 27.5% that be able to enter the system compared to the result of login systems that use AES algorithm 128-bit, 192-bit or 256-bit was obtained 100% that cannot enter into the system. The estimation of the average encryption process of AES 128, 192 and 256 bits are 5.8 seconds, 7.74 seconds, and 9.46 seconds.
Improve the Accuracy of Support Vector Machine Using Chi Square Statistic and Term Frequency Inverse Document Frequency on Movie Review Sentiment Analysis Larasati, Ukhti Ikhsani; Muslim, Much Aziz; Arifudin, Riza; Alamsyah, Alamsyah
Scientific Journal of Informatics Vol 6, No 1 (2019): Mei 2019
Publisher : Universitas Negeri Semarang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.15294/sji.v6i1.14244

Abstract

Data processing can be done with text mining techniques. To process large text data is required a machine to explore opinions, including positive or negative opinions. Sentiment analysis is a process that applies text mining methods. Sentiment analysis is a process that aims to determine the content of the dataset in the form of text is positive or negative. Support vector machine is one of the classification algorithms that can be used for sentiment analysis. However, support vector machine works less well on the large-sized data. In addition, in the text mining process there are constraints one is number of attributes used. With many attributes it will reduce the performance of the classifier so as to provide a low level of accuracy. The purpose of this research is to increase the support vector machine accuracy with implementation of feature selection and feature weighting. Feature selection will reduce a large number of irrelevant attributes. In this study the feature is selected based on the top value of K = 500. Once selected the relevant attributes are then performed feature weighting to calculate the weight of each attribute selected. The feature selection method used is chi square statistic and feature weighting using Term Frequency Inverse Document Frequency (TFIDF). Result of experiment using Matlab R2017b is integration of support vector machine with chi square statistic and TFIDF that uses 10 fold cross validation gives an increase of accuracy of 11.5% with the following explanation, the accuracy of the support vector machine without applying chi square statistic and TFIDF resulted in an accuracy of 68.7% and the accuracy of the support vector machine by applying chi square statistic and TFIDF resulted in an accuracy of 80.2%.
Co-Authors Abas Setiawan Adha, Nugraha Saputra Adhitiya, Ervan Nur Adi Nur Cahyono Aditya, Rozak Ilham Aji Saputra Aji, Septiko Al Hakim, M. Faris Alamsyah - Alfatah, Abdul Muis Alfatah, Abdul Muis Amalia Fikri Utami Amin Suyitno Anggita, Anggita Anggyi Trisnawan Putra Ardhi Prabowo Arief Agoestanto Arief Broto Susilo Arif Widiyatmoko, Arif Ariska, Mega Arka Yanitama Arrohman, Ramadhan Ridho Asih, Tri Sri Noor Atikah Ari Pramesti, Atikah Ari Budi Prasetiyo, Budi Chakim, Muhamad Nur Choirunnisa, Rizkiyanti Clarissa Amanda Josaputri, Clarissa Amanda Damayanti, Angreswari Ayu Damayanti, Tiara Desy Fitria Astutianingtyas Devi, Feroza Rosalina Devi, Feroza Rosalina Dewi, Nuriana Rachmani Dian Tri Wiyanti Dwijanto Dwijanto, Dwijanto Endang Sugiharti, Endang Faozi, Faozi Farkhan, Feri Fata, Muhamad Nasrul Fata, Muhamad Nasrul Fitriana, Jevita Dwi Habaib, Taufik Nur Hakim, M. Faris Al Hani'ah, Ulfatun Hardi Suyitno Hardianti, Ririn Dwi Hariyanto, Abdul Hidayat, Kukuh Triyuliarno Hidayat, Kukuh Triyuliarno Hikmah, Al Hikmawati, Zahra Shofia Hikmawati, Zahra Shofia Ichsan, Nur Jumanto Jumanto, Jumanto Jumanto Unjung Kumalasari, Putri Laksita Kuncoro, Rizki Danang Kartiko Larasati, Ukhti Ikhsani Larasati, Ukhti Ikhsani Mashuri Mashuri Masrukan Masrukan Maulana, Bagus Surya Melissa Salma Darmawan Mohammad Asikin Much Aziz Muslim Mudzakir, Amat Muhammad Fariz Muttaqin, Irfan Fajar Nugroho, Ari Yulianto Nugroho, Muhammad Andi Nugroho, Prisma Bayu Pramadita, Anjar Aditya Putriaji Hendikawati Rachmawati, Eka Yuni Rachmawati, Eka Yuni Rahmanda, Primana Oky Rahmanda, Primana Oky Ratna Dewi, Novi Rizki Nor Amelia Rochmad - Rofik Rofik, Rofik S.Pd. M Kes I Ketut Sudiana . Safri, Yofi Firdan Safri, Yofi Firdan Sasongko, Andry Scolastika Mariani Sekartaji, Novanka Agnes Setiawan, Danang Aji Stephani Diah Pamelasari Subarkah, Agus Subhan Subhan Sukmadewanti, Irahayu Sukmadewanti, Irahayu Susanto, Febri Trihanto, Wandha Budhi Trihanto, Wandha Budhi Utami, Hamdan Dian Jaya Rozi Hyang Utami, Hamdan Dian Jaya Rozi Hyang Wibowo, Eric Adie Widyawati, Kharisa Yahya Nur Ifriza Yulianto, Muhamad Maulana Yulianto, Muhamad Maulana Zaenal Abidin Zulfikar Adi Nugroho, Zulfikar Adi