Claim Missing Document
Check
Articles

Found 4 Documents
Search
Journal : Prosiding SNATIF

EKSTRAKSI CIRI FOVEA AVASCULAR ZONE (FAZ) BERBASIS WAVELET PADA PENDERITA DIABETIC RETINOPATHY Purnamasar, Dewi; Nugroho, Hanung Adi; Soesanti, Indah
Prosiding SNATIF Vol 1, No 1 (2014): Prosiding Seminar Nasional Teknologi dan Informatika
Publisher : Prosiding SNATIF

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

Abstrak  Jenis Diabetic Retinopathy (DR) adalah komplikasi okular yang paling umum dan serius dari Diabetes Mellitus (DM) yang mengganggu retina. Komplikasi ini menyebabkan kebutaan. Faktor yang menentukan DR adalah Fovea Avascular Zone (FAZ). Untuk mengetahui karakteristik dari FAZ  dengan kasat mata sangat susah, karena letaknya berada di daerah makula dan tertutup pembuluh darah vessel. Tujuan dari penelitian ini adalah untuk mengetahui ekstraksi ciri FAZ dengan membandingkan wavelet db2,db9,symlet dan coif1 untuk mendapatkan nilai entropy maupun energi serta untuk mengetahui nilai keakuratan dari masing-masing level penderita DR dengan mata normal. Metode penelitian ini menggunakan wavelet, data base yang digunakan adalah citra retina messidor. Dari hasil penelitian yang telah dilakukan dapat diketahui bahwa wavelet coif1 mempunyai akurasi yang lebih tinggi dibandingkan dengan db2,db9 dan wavelet symlet. Wavelet coif1 menunjukkan tingkat error kesalahan bernilai 21,53%, akurasinya 78,46%. Akurasinya lebih tinggi dibandingkan dengan wavelet yang lain. Hal ini menunjukkan bahwa wavelet coif1 dapat membedakan FAZ mata normal dengan penderita DR. Kata kunci: entropy, Fovea Avascular Zone, vessel, wavelet.
KLASIFIKASI SUARA JANTUNG MENGGUNAKAN NEURAL NETWORK BACKPROPAGATION BERBASIS CIRI STATISTIS Wijaya, Nur Hudha; Soesanti, Indah; Firmansyah, Eka
Prosiding SNATIF 2017: Prosiding Seminar Nasional Teknologi dan informatika (BUKU 1)
Publisher : Prosiding SNATIF

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

AbstrakPara ahli memerlukan konsentrasi dalam pengambilan kesimpulan untuk menentukan kelainan suara jantung manusia. Menggali berbagai macam ciri untuk mengklasifikasikan suara jantung menjadi normal dan abnormal merupakan bagian yang sangat penting. Dengan metode artificial neural network (ANN) berbasis ciri statistis ini bekerja diranah spasial sehingga tidak perlu melakukan transformasi di ranah frekwensi.  Suara jantung diklasifikasikan menjadi dua kelas yaitu normal dan abnormal. Penelitian ini terdapat data suara jantung normal sejumlah 8 suara, sedangkan data suara jantung abnormal sejumlah 13 suara. Pendekatan ciri statistis dengan menghitunng nilai mean, mode, variance, deviation, skewness, kurtosis, entropy klasifikasi dengan neural backpropagation memberikan hasil Accuracy = 91,72%, Sensitivity = 99,50%, Spesificity = 79,17%, Precision = 90,16%. Berdasarkan hasil klasifikasi dengan metode artificial neural network backpropagation menunjukkan accuracy mencapai 91,72%.  Kata kunci: ekstraksi, ciri, suara, jantung, statistik.
KLASIFIKASI SUARA JANTUNG MENGGUNAKAN NEURAL NETWORK BACKPROPAGATION BERBASIS CIRI STATISTIS Wijaya, Nur Hudha; Soesanti, Indah; Firmansyah, Eka
Prosiding SNATIF 2017: Prosiding Seminar Nasional Teknologi dan informatika (BUKU 1)
Publisher : Prosiding SNATIF

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

AbstrakPara ahli memerlukan konsentrasi dalam pengambilan kesimpulan untuk menentukan kelainan suara jantung manusia. Menggali berbagai macam ciri untuk mengklasifikasikan suara jantung menjadi normal dan abnormal merupakan bagian yang sangat penting. Dengan metode artificial neural network (ANN) berbasis ciri statistis ini bekerja diranah spasial sehingga tidak perlu melakukan transformasi di ranah frekwensi.  Suara jantung diklasifikasikan menjadi dua kelas yaitu normal dan abnormal. Penelitian ini terdapat data suara jantung normal sejumlah 8 suara, sedangkan data suara jantung abnormal sejumlah 13 suara. Pendekatan ciri statistis dengan menghitunng nilai mean, mode, variance, deviation, skewness, kurtosis, entropy klasifikasi dengan neural backpropagation memberikan hasil Accuracy = 91,72%, Sensitivity = 99,50%, Spesificity = 79,17%, Precision = 90,16%. Berdasarkan hasil klasifikasi dengan metode artificial neural network backpropagation menunjukkan accuracy mencapai 91,72%.  Kata kunci: ekstraksi, ciri, suara, jantung, statistik.
EKSTRAKSI CIRI FOVEA AVASCULAR ZONE (FAZ) BERBASIS WAVELET PADA PENDERITA DIABETIC RETINOPATHY Purnamasar, Dewi; Nugroho, Hanung Adi; Soesanti, Indah
Prosiding SNATIF 2014: Prosiding Seminar Nasional Teknologi dan Informatika
Publisher : Prosiding SNATIF

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

Abstrak Jenis Diabetic Retinopathy (DR) adalah komplikasi okular yang paling umum dan serius dari Diabetes Mellitus (DM) yang mengganggu retina. Komplikasi ini menyebabkan kebutaan. Faktor yang menentukan DR adalah Fovea Avascular Zone (FAZ). Untuk mengetahui karakteristik dari FAZ dengan kasat mata sangat susah, karena letaknya berada di daerah makula dan tertutup pembuluh darah vessel. Tujuan dari penelitian ini adalah untuk mengetahui ekstraksi ciri FAZ dengan membandingkan wavelet db2,db9,symlet dan coif1 untuk mendapatkan nilai entropy maupun energi serta untuk mengetahui nilai keakuratan dari masing-masing level penderita DR dengan mata normal. Metode penelitian ini menggunakan wavelet, data base yang digunakan adalah citra retina messidor. Dari hasil penelitian yang telah dilakukan dapat diketahui bahwa wavelet coif1 mempunyai akurasi yang lebih tinggi dibandingkan dengan db2,db9 dan wavelet symlet. Wavelet coif1 menunjukkan tingkat error kesalahan bernilai 21,53%, akurasinya 78,46%. Akurasinya lebih tinggi dibandingkan dengan wavelet yang lain. Hal ini menunjukkan bahwa wavelet coif1 dapat membedakan FAZ mata normal dengan penderita DR. Kata kunci: entropy, Fovea Avascular Zone, vessel, wavelet.
Co-Authors Adha Imam Cahyadi Adhi Soesanto, Adhi Adhi Susanto Adhistya Erna Permanasari Afrisal, Hadha Agus Eko Minarno Agus Jamal Al-Fahsi, Resha Dwika Hefni Andrey Nino Kurniawan Andrey Nino Kurniawan Nino Kurniawan Andrey Nino Kurniawan, Andrey Nino Anna Nur Nazilah Chamim Aqil Aqthobirrobbany Aqthobirrobbany, Aqil Arief Rachma Wibowo Bambang Sutopo Bana Handaga Beta Estri Adiana Cepi Ramdani Chamim, Anna Nur Nazilah Danny Kurnianto Desyandri Desyandri Dewi Purnamasar Diah Priyawati Dian Nova Kusuma Hardani Domy Kristomo Dwi Rochmayanti Dwi Rochmayanti Dwi Rochmayanti Eka Firmansyah Elfrida Ratnawati Emhandyksa, Medycha Faaris Mujaahid Fathania Firwan Firdaus Fikri Zaini Baridwan Hanifah Rahmi Fajrin Hanung Adi Nugroho Hedi Purwanto Hendriyawan A., M. S. Henry Sulistyo Hidayatul Fitri Hotama, Christianus Frederick Husnul Rahmawati Sakinnah I Made Agus Wirahadi Putra Ikhwan Mustiadi Indriana Hidayah Isbadi Urifan Karisma Trinanda Putra, Karisma Trinanda Krisna Nuresa Qodri Litasari Litasari Litasari M.S. Hendriyawan Achmad Maesadji Tjokronagoro Maesadji Tjokronagoro Maesadji Tjokronegoro Meirista Wulandari Muhammad Arzanul Manhar Muhammad Rausan Fikri Mustar, Muhamad Yusvin Noor Akhmad Setiawan Nurokhim Nurokhim Oki Iwan Pambudi Oktoeberza, Widhia KZ Oyas Wahyunggoro Paulus Tofan Rapiyanta Pipit Utami Ramadoni Syahputra Ratnasari Nur Rohmah Rina Susilowati Risanuri Hidayat Rudy Hartanto Sekar Sari Siti Helmyati Soesanto, Adhi Sulistyo, Henry Sunu Wibirama Syahfitra, Febrian Dhimas Thomas Sri Widodo Thomas Sri Widodo Thomas Sri Widodo Thomas Sri Widodo Tole Sutikno Warsun Najib Widyawan Widyawati Prima, Widyawati Wijaya, Nur Hudha Wijaya, Nur Hudha Wiyagi, Rama Okta Yudhi Agussationo Yundari, Yundari