Claim Missing Document
Check
Articles

Measuring the Level of Security Awareness of Smartphone Users Among Universitas Malikussaleh Students Using the Fuzzy Analytical Hierarchy Process Method Andreansyah, Sabda; Ula, Munirul; Afrillia, Yesy
International Journal of Engineering, Science and Information Technology Vol 5, No 2 (2025)
Publisher : Malikussaleh University, Aceh, Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.52088/ijesty.v5i2.861

Abstract

Technology is developing rapidly; its benefits are manifold. The development of technology, especially smartphones, Has become a part of everyday life that cannot be distinguished anymore. The increasing number of smartphone users has also impacted the rising information security and privacy cases caused by a lack of awareness of spam, malware, and phishing. Many users upload personal information such as photos, phone numbers, and addresses without antivirus protection. This study aims to identify security and privacy challenges in smartphone use by measuring problems in the dimensions of attitude (knowledge), knowledge (attitude), and behavior (behavior). There are five focus areas: Backdoor, hardware, and AndroidOS, which is still low compared to applications and permissions. The method used the Analytical Hierarchy Process (AHP) with the Fuzzy concept to measure the level of information security awareness of Malikussaleh University students who use Android phones. The results showed that the overall level of understanding was good (80%). Although the attitude and behavior dimensions showed good awareness, the knowledge dimension was moderate. This may be why information security breaches still often occur among Android phone users. Faculty of Economics, Less Aware: 23 people Unaware: 1 person. Faculty of Social and Political Sciences, Less Aware: 24 people. Faculty of Teacher Training and Education, Less Aware: 21 people. Faculty of Law, Less Aware: 24 people. Faculty of Medicine, Less Aware: 27 people and Aware: 3 people. Faculty of Agriculture, Less Aware: 30 people. Faculty of Informatics Engineering, Less Aware: 70 people and Aware: 5 people. Total Awareness, Less Aware: 199 people, nine people, and Unaware: 1 person.
Monitoring dan Pengendalian Sistem Hidroponik Deep Flow Technique (DFT) Pada Tanaman Melon Menggunakan Metode Rule Based Berbasis Internet of Thinks Ridha, Ridha; Ula, Munirul; Yunizar, Zara
Jurnal Ilmiah Global Education Vol. 6 No. 3 (2025): JURNAL ILMIAH GLOBAL EDUCATION
Publisher : LPPM Institut Pendidikan Nusantara Global

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.55681/jige.v6i3.4158

Abstract

Hydroponic cultivation offers an innovative solution to land limitations and supports sustainable agricultural practices. This study presents the design and implementation of an Internet of Things (IoT)-based monitoring and control system for melon cultivation using the Deep Flow Technique (DFT), enhanced with a rule-based decision-making method. The system integrates an ESP32 microcontroller with multiple sensors—including pH, temperature, TDS, and ultrasonic sensors—to monitor key parameters of the nutrient solution in real time. A rule-based algorithm is applied to automatically regulate system responses to environmental changes, such as imbalances in pH levels, nutrient concentration, and water height. The collected data is displayed through a web-based platform and Telegram notifications, enabling remote access and management. System functionality was tested under various simulated conditions to evaluate accuracy and responsiveness. The results demonstrate that the system effectively maintains the hydroponic environment within optimal ranges, promoting healthy melon growth. This implementation enhances efficiency in monitoring and control, and contributes to the advancement of smart farming technologies powered by IoT.
Enhancing Resource Efficiency in Urban Agriculture: A GA-Fuzzy Logic IoT-Based Smart Hydroponic Greenhouse Ula, Munirul; Rusadi, Athirah; Daud, Muhammad
Journal of Artificial Intelligence and Software Engineering Vol 5, No 3 (2025): September
Publisher : Politeknik Negeri Lhokseumawe

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30811/jaise.v5i3.7799

Abstract

Pertanian presisi berbasis Internet of Things (IoT) menawarkan solusi inovatif terhadap tantangan ketahanan pangan dan keterbatasan lahan di daerah perkotaan. Penelitian ini bertujuan merancang dan mengevaluasi sistem rumah kaca cerdas berbasis hidroponik untuk budidaya tumpang sari anggur dan selada  menggunakan Nutrient Film Technique (NFT). Metodologi penelitian mengintegrasikan Pengendali Logika Fuzzy yang dioptimalkan dengan Algoritma Genetika (GA-FLC) untuk kontrol real-time enam parameter lingkungan: suhu, kelembapan, pH, konduktivitas listrik, intensitas cahaya, dan konsentrasi CO₂. Sistem menggunakan mikrokontroler ESP32 dengan array sensor presisi tinggi dan platform cloud (ThingSpeak, Firebase) untuk monitoring dan kontrol otomatis. Eksperimen dilaksanakan menggunakan Randomized Complete Block Design dengan dua faktor (sistem kontrol GA-FLC vs konvensional; monokultur vs tumpang sari) selama 120 hari di kondisi iklim tropis Bireuen, Aceh. Hasil menunjukkan sistem GA-FLC superior dalam akurasi kontrol dengan Mean Absolute Error suhu 0,7°C (61% lebih baik), response time aktuator 47-53% lebih cepat, dan efisiensi energi 25-30% lebih tinggi. Produktivitas anggur meningkat 27,8% (2,48 kg/tanaman) dan selada 23,7% (245 g/tanaman) dibandingkan sistem konvensional. Efisiensi sumber daya menunjukkan penghematan air 33,3%, energi 32,6%. Water Use Efficiency mencapai 12,4 kg/m³ dengan Energy Productivity 1,85 kg/kWh. Sistem ini memberikan kontribusi signifikan untuk pertanian perkotaan berkelanjutan dengan produktivitas tinggi, efisiensi sumber daya optimal, dan viabilitas ekonomi yang menarik untuk implementasi komersial di daerah tropis.
Method Design of an IoT-Based Automatic Pest Repellent System Prototype for Agriculture Kamaruzzaman, Hilda Zulfira; Ula, Munirul; Meiyanti, Rini
Journal of Applied Informatics and Computing Vol. 9 No. 5 (2025): October 2025
Publisher : Politeknik Negeri Batam

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30871/jaic.v9i5.10632

Abstract

Indonesia, as an agricultural country, still faces serious challenges in the farming sector, particularly pest attacks from birds and insects that significantly reduce rice productivity and may lead to crop failure. The use of traditional methods and chemical pesticides is considered ineffective and has negative impacts on health and the environment. This study aims to design a prototype of an automated pest repellent system for agriculture based on the Internet of Things (IoT) that is environmentally friendly, energy-efficient, and easy to operate by local farmers. The research method employed a prototyping approach, which includes problem identification, hardware and software design, testing, and system evaluation. The device consists of a NodeMCU ESP32 microcontroller, a PIR sensor to detect pest movement, relay, ultrasonic speaker, electric net, and solar panel as the main power source. Testing on a miniature rice field model showed that the system could detect pest movement at a distance of approximately 5 meters and automatically activate the ultrasonic speaker with a range of 50–100 meters to repel birds, and the electric net to catch insects at night. Energy consumption is primarily supplied by the solar panel, and a fully charged battery can power the system for about 3 hours without sunlight. The detection success rate reached more than 85% with consistent actuator response. This system has proven to reduce pesticide dependency, is environmentally friendly, and has the potential to increase rice farming efficiency.
Comparing Long Short-Term Memory and Random Forest Accuracy for Bitcoin Price Forecasting Ula, Munirul; Ilhadi, Veri; Sidek, Zailani Mohamed
MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer Vol. 23 No. 2 (2024)
Publisher : Universitas Bumigora

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30812/matrik.v23i2.3267

Abstract

Bitcoin’s daily value fluctuations are very dynamic. Understanding its rapid and intricate price movements demands advanced techniques for processing complex data. This research aims to compare the accuracy of two machine learning methods, Random Forest (RF) and Long Short-Term Memory (LSTM), in predicting Bitcoin price. This research employs RF and LSTM algorithms to forecast Bitcoin prices using a two-year Yahoo Finance dataset. The evaluation metrics used were accuracy based on Mean Absolute Percentage Error (MAPE) and computational power (CPU-Z). As a result of this research, the LSTM model demonstrates higher accuracy compared to the RF model. MAPE reveals LSTM’s precision of 99.8% and RF’s accuracy of 90.1%. Regarding computational time and resources, RF shows slightly better performance than LSTM. The visual comparison further emphasizes LSTM’s better performance in predicting Bitcoin prices, highlighting its potential for informed decision-making in cryptocurrency trading. This research contributes valuable insights into the effectiveness, strengths, and weaknesses of LSTM and RF models in predicting cryptocurrency trends.
Sistem Pemantau Kenyamanan Ruang Kelas Menggunakan Protokol Mqtt dan Http dengan Notifikasi Telegram Berbasis Internet Of Things Fikhri, Aditya Aziz; Ula, Munirul; Sayuti, Muhammad
Jurnal Teknologi Informasi dan Ilmu Komputer Vol 12 No 5: Oktober 2025
Publisher : Fakultas Ilmu Komputer, Universitas Brawijaya

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.25126/jtiik.2025125

Abstract

Pendidikan berperan penting dalam pembangunan bangsa dan peningkatan kualitas hidup masyarakat. Sekolah sebagai institusi pendidikan formal membutuhkan lingkungan belajar yang sehat dan nyaman untuk mendukung proses belajar-mengajar. Salah satu faktor utama yang memengaruhi kenyamanan belajar adalah kualitas udara. Penelitian ini bertujuan untuk memantau kualitas udara di ruang kelas SD Sukma Bangsa Bireuen, Provinsi Aceh, menggunakan konsep Internet of Things (IoT) dengan membandingkan dua protokol komunikasi, yaitu MQTT dan HTTP. Parameter udara yang dipantau meliputi suhu, kelembapan, CO, CO₂, PM1, dan PM2.5. Hasil pengujian pada 10 sampel data menunjukkan bahwa protokol MQTT memiliki rata-rata waktu pengiriman data sebesar 6,2 milidetik, sedangkan protokol HTTP memerlukan rata-rata waktu 267 milidetik, menunjukkan bahwa MQTT sekitar 97,7% lebih cepat. Pada sesi pertama (pagi–siang), terjadi kenaikan suhu hingga 1,7°C, penurunan kelembapan sekitar 5%, sementara kadar CO dan CO₂, serta konsentrasi PM1 dan PM2.5 masih dalam batas aman. Sesi kedua (malam) menunjukkan penurunan suhu sekitar 2°C, kenaikan kelembapan sebesar 8%, dan peningkatan kadar CO₂ hingga 22,5% karena minimnya sirkulasi udara. Dashboard yang dibangun menggunakan Node-RED dapat menampilkan data secara real-time dari kedua protokol dengan lancar. Selain itu, sistem juga diintegrasikan dengan fitur notifikasi melalui Telegram, yang mampu mengirimkan peringatan otomatis setiap 10 menit jika parameter melebihi ambang batas, serta melayani permintaan data secara langsung dari pengguna. Dengan efisiensi pengiriman data, fleksibilitas arsitektur, dan kemampuan notifikasi real-time, sistem ini tidak hanya efektif untuk lingkungan kelas, tetapi juga berpotensi direplikasi pada ruang tertutup lainnya seperti laboratorium, ruang guru, dan ruang publik lainnya di lingkungan pendidikan.   Abstract Education plays an essential role in national development and improving the quality of life in society. Schools, as formal educational institutions, require a healthy and comfortable learning environment to support the teaching and learning process. One of the main factors affecting learning comfort is air quality. This study aims to monitor air quality in a classroom at SD Sukma Bangsa Bireuen, Aceh Province, using the Internet of Things (IoT) concept by comparing two communication protocols: MQTT and HTTP. The monitored air parameters include temperature, humidity, CO, CO₂, PM1, and PM2.5. Test results from 10 data samples show that the MQTT protocol achieved an average data transmission time of 6.2 milliseconds, while the HTTP protocol required an average of 267 milliseconds, indicating that MQTT is approximately 97.7% faster. During the first session (morning to afternoon), there was an increase in temperature of up to 1.7°C and a decrease in humidity of about 5%, while CO and CO₂ levels and PM1 and PM2.5 concentrations remained within safe limits. The second session (evening) showed a temperature drop of about 2°C, an increase in humidity by 8%, and a rise in CO₂ levels by up to 22.5% due to limited air circulation. The dashboard built using Node-RED successfully displayed real-time data from both protocols. Additionally, the system was integrated with a Telegram notification feature that could automatically send alerts every 10 minutes if any parameter exceeded the threshold, as well as respond to real-time data requests from users. With efficient data transmission, flexible architecture, and real-time notification capabilities, the system is not only effective for classroom environments but also has the potential to be replicated in other enclosed spaces such as laboratories, teacher rooms, and public areas within educational institutions.
ANALISIS KINERJA TATA KELOLA TEKNOLOGI INFORMASI MENGGUNAKAN FRAMEWORK COBIT 2019 PADA UNIVERSITAS JABAL GHAFUR Salimuddin, Salimuddin; Ula, Munirul; Nurdin, Nurdin
Jurnal Informatika dan Teknik Elektro Terapan Vol. 13 No. 2 (2025)
Publisher : Universitas Lampung

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.23960/jitet.v13i2.6130

Abstract

This research aims to evaluate Information Technology Governance at Jabal Ghafur University (Unigha) using the COBIT 2019 Framework. The focus of the research includes analysis of Information Technology operational processes, measurement of feasibility with the COBIT 2019 Design Factor Toolkit, and performance evaluation on two main process objectives, namely EDM03 (Ensured Risk Optimization) and MEA03 (Managed Compliance with External Requirements). This research involved respondents selected based on RACI Chart analysis, consisting of the Vice Chancellor I, Head of the General Administration Bureau, Head of the Administration Section, Head of PUKSI, Head of the Information Security Section, and Head of the Quality Assurance Agency (LPM) using a questionnaire. The analysis results show that these two process objectives have an average capability value of 100% at Capability Level 1, but only achieved Largely Achieved at Capability Level 2. The gap analysis shows a gap between the current condition (Level 1) and the desired target (Level 4), with a difference of 3. Based on these findings, it is recommended that Unigha strengthen risk management and compliance with external requirements, through updating internal policies, improving HR training and utilizing technology more effectively. This improvement is expected to increase the level of capability and performance of Information Technology Governance in Unigha.
Unjuk Kerja Algoritma Support Vector Machine (SVM) dan Naïve Bayes Dalam Pengklasifikasian Berita Hoaks Pada Twitter Tentang Aksi Cepat Tanggap (ACT) Hasan Dalimunthe, Amir; Munirul Ula; Rini Meiyanti
Jurnal Elektronika dan Teknologi Informasi Vol 5 No 2 (2024): September 2024
Publisher : LPPM-UNIKI

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.5201/jet.v5i2.400

Abstract

Twitter merupakan satu dari banyaknya media sosial yang populer di kalangan masyarakat.  Terkadang informasi yang beredar di twitter merupakan berita palsu yang tidak dapat dibuktikan kebenarannya (hoaks). Penelitian ini menggunakan algoritma Naïve Bayes dan Support Vector Machine (SVM) untuk menentukan berita yang beredar di platfrom twitter mengenai Aksi Cepat Tanggap (ACT) termasuk ke dalam berita hoaks atau berita faktual. Proses klasifikasi dimulai dengan pengumpulan data dengan Teknik Scraping dan setelah itu dilakukan pelabelan untuk mengklasifikasi data latih. Data yang telah diberi label kemudian diproses melalui text pre-processing dan dilanjutkan dengan klasifikasi menggunakan metode Naïve Bayes dan Support Vector Machine (SVM). Jumlah data yang digunakan dalam penelitian ini sebanyak 1425 data dan dibagi ke dalam kategori fakta dan kategori hoaks. Pada proses klasifikasi algoritma Naïve Bayes mendapat nilai akurasi 66,76%, presisi 70,13%, dan recall 58,38%. Sedangkan hasil evaluasi klasifikasi Support Vector Machine (SVM) memiliki tingkat akurasi 65,22%, presisi 71,37%, dan recall 50,84%. Sehingga dapat disimpulkan performa algoritma Naïve Bayes memiliki performa yang lebih bagus dari algoritma Support Vector Machine.
Clustering of the Best Senior High Schools in Serdang Bedagai Regency Using the K-Means Method Siagian, Tania Annisa; Nurdin, Nurdin; Ula, Munirul
Jurnal Sistem Komputer dan Informatika (JSON) Vol. 6 No. 4 (2025): Juni 2025
Publisher : Universitas Budi Darma

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30865/json.v6i4.8669

Abstract

This study aims to cluster the best Senior High Schools (SMA) in Serdang Bedagai Regency using the K-Means method. Five evaluation indicators were used in the clustering process: accreditation, school status, number of teachers, achievements, and facilities. A total of 41 schools were analyzed using a non-hierarchical approach, with the optimal number of clusters determined through the Elbow Method, resulting in three groups: excellent, good, and fair. Data normalization was performed using the Min-Max method to ensure equal scaling among variables. The clustering results using the K-Means algorithm formed three clusters that represent the quality of schools based on transformed numerical data. The K-Means method proved capable of providing a general overview of school quality grouping, which can serve as a basis for policy-making to improve the quality of education in the region.
A Comparative Study of K-Means and K-Medoids for Clustering Dengue Fever Risk Areas in Medan Fitri, Anisa Amelia; Ula, Munirul; Agusniar, Cut
Jurnal Sistem Komputer dan Informatika (JSON) Vol. 6 No. 4 (2025): Juni 2025
Publisher : Universitas Budi Darma

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30865/json.v6i4.8702

Abstract

Dengue Hemorrhagic Fever (DHF) is a localized disease that continues to contribute to a high number of cases in Medan City. The local health authority faces challenges in identifying priority areas for effective prevention and control. This study applies data clustering techniques to map DHF risk areas by comparing the performance of K-Means and K-Medoids algorithms. The optimal number of clusters was determined using the Silhouette Coefficient, while the clustering quality was assessed using the Davies-Bouldin Index (DBI). The findings indicate that K-Means performs best with four clusters and achieves a lower DBI value compared to K-Medoids. Based on this, the study recommends using K-Means to categorize DHF risk areas into four priority levels: high, medium, low, and very low. This approach is expected to support the Medan City Health Office in implementing more targeted and efficient DHF control strategies.