Claim Missing Document
Check
Articles

Pengembangan Aplikasi Text-to-Speech Bahasa Indonesia Menggunakan Metode Finite State Automata Berbasis Android Rieke Adriati W.; Herman Tolle; Onny Setyawati
Jurnal Nasional Teknik Elektro dan Teknologi Informasi Vol 5 No 1: Februari 2016
Publisher : Departemen Teknik Elektro dan Teknologi Informasi, Fakultas Teknik, Universitas Gadjah Mada

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (651.47 KB)

Abstract

In this paper, the development of Android-based Indonesian Text-to-Speech (TTS) utilizing API Google for English TTS as a data voice has been proposed. Using this approach, a lightweight and mobile Indonesian TTS application can be realized. The utilization of English data voice is carried out by cutting off (hyphenate) Indonesian words into syllables using Finite State Automata method, then searching for equivalent syllables in English which have similar pronunciation. Using FSA method, this system is able to hyphenate all Indonesian words up to 95.19%. This application has Mean Opinion Score (MOS) value of understanding the words criteria of 3.31 and MOS value of smoothness pronunciation criteria of 3.46 (in a scale of 5).
Pemodelan Fuzzy Logic Control untuk Pengendali PWM pada Buck Converter Helmy Mukti Himawan; Onny Setyawati; Hadi Suyono
Jurnal Nasional Teknik Elektro dan Teknologi Informasi Vol 5 No 1: Februari 2016
Publisher : Departemen Teknik Elektro dan Teknologi Informasi, Fakultas Teknik, Universitas Gadjah Mada

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (1177.736 KB)

Abstract

Recently the switching mode used in a buck converter is controlled by pulse width modulation (PWM) which has relatively higher efficiency compared to a linear power supply system. In general, there are two problems that often occur in the buck converter, First, the difficulties in controlling inductor current which has considerably large ripple, and second, a transient output voltage that appears at the start-up. By using fuzzy logic control in PWM switching mode, the inductor current and output voltage of the buck converter can be controlled. Using Mamdani method fuzzy logic with 2 inputs, i.e. Error and Change of Error, the system produces 1 output, which is duty ratio. The results showed that the fuzzy logic control decreased the error of the output voltage of buck converter by 3%, and decreased the ripple in the inductor current by 1.5% up to 3%.
RANCANG BANGUN NODE KONTROLER POMPA PADA PENYIRAMAN TANAMAN OTOMATIS GREENHOUSE BERBASIS IOT Muhammad Athalla; Onny Setyawati; Raden Setyawan
Jurnal Mahasiswa TEUB Vol. 10 No. 2 (2022)
Publisher : Jurnal Mahasiswa TEUB

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

ABSTRAKGreenhouse merupakan salah satu metode modern dalam pembudidayaan tanaman dengan metode memanipulasi kondisi lingkungan sesuai dengan kondisi yang dikehendaki. Untuk menghasilkan tanaman greenhouse yang sehat dan subur, diperlukan beberapa faktor seperti, suhu, sinar matahari, air, dan kelembaban tanah yang sesuai dengan jenis tanamannya. Dalam praktiknya, penyiraman tanaman di dalam metode greenhouse membutuhkan tenaga, waktu, dan biaya yang banyak sehingga terjadi pemborosan dan kurangnya efisiensi. Melihat masalah yang ada, peneliti ingin menawarkan solusi kepadapetani greenhouse dengan menciptakan sebuah alat penyiraman tanaman otomatis yang dapat melakukan penyiraman yang cukup sesuai dengan jenis tanaman, bekerja secara otomatis, dan membutuhkan biaya yang sedikit dalam pembuatan dan perawatan. Node kontroler pompa ini dilengkapi dengan ESP 32 sebagai mikrokontrolernya, sistem penyiraman dilakukan menggunakan pompa air dan pompa air DC M-Series Hiu Dual Pump dan memiliki catu daya menggunakan adaptor 5V 3A. Node kontroler pompa dapat bekerja secara otomatis, saat nilai melewati batas dari nilai yang ditetapkan maka aktuator menyala. Pengujian node diperoleh penerimaan data menggunakan Bluetooth membutuhkan waktu 1,88 detik hingga 3,18 detik, dan melakukan pengiriman data menggunakan internet membutuhkan 386 MB dengan daya sebesar 1,2 W dalam keadaan bekerja. Kata kunci: Greenhouse, Node Kontroler pompa, penyiraman ABSTRACTGreenhouse is one of the modern methods in plant cultivation by manipulating environmental conditions according to the desired conditions. To produce healthy and fertile greenhouse plants, several factors are needed, such as temperature, sunlight, water, and soil moisture according to the type of plant. In practice, watering plants in the greenhouse method requires a lot of energy, time, and cost, resulting in wastage and lack of efficiency. Seeing the existingproblems, the researcher wants to offer a solution to greenhouse farmers by creating an automatic plant watering device that can do sufficient watering according to the type of plant, works automatically, and requires little cost in manufacture and maintenance. This pump controller node is equipped with ESP 32 as its microcontroller, the watering system is carried out using a water pump and a DC M-Series Hiu Dual Pump water pump and has a power supply using a 5V 3A adapter. The pump controller node can work automatically, when the value exceeds the limit of the set value, the actuator turns on. Testing the nodes obtained that receiving data using Bluetooth takes 1.88 seconds to 3.18 seconds, and sending data using the internet requires 386 MB with a power of 1.2 W in a working state. Keywords: Greenhouse, Pump Controller Node, Watering, IoT
SISTEM MONITORING JARAK DEKAT DAN PENDETEKSI SUARA BERBASIS MIKROKONTROLER ARDUINO NANO UNTUK MESIN PENETAS TELUR AYAM Muhammad Zein; Akhmad Zainuri; Onny Setyawati
Jurnal Mahasiswa TEUB Vol. 10 No. 3 (2022):
Publisher : Jurnal Mahasiswa TEUB

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

ABSTRAKAyam merupakan salah satu sumber protein yang murah dan mudah didapatkan oleh masyarakat Indonesia.Seiring perkembangan dan pertumbuhan penduduk Indonesia yang sangat pesat, hal ini berbanding lurus padatingkat konsumsi masyarakat pada daging khususnya pada kebutuhan daging ayam. Ayam dapatdikembangbiakkan dengan mudah oleh masyarakat biasa maupun peternak, untuk dapat menetaskan telur ayamdibutuhkan tempat dengan suhu dan kelembaban yang sesuai dengan telur ayam agar dapat menetas. Penetasantelur ayam membutuhkan waktu berkisar 18-21 hari, yang artinya telur ayam berada di dalam mesin penetas telurselama selang waktu tersebut dengan kondisi mesin penetas telur harus menjaga suhu dan kelembaban didalamnya. Pada sistem ini akan membaca nilai suhu dan kelembaban dari ruang penetasan dengan menggunakansensor DHT21, data suhu dan kelembaban tersebut akan digunakan sebagai acuan untuk mengontrol aktuatorberupa relay yang terhubung pada bohlam. Hal tersebut bertujuan agar suhu pada ruang penetasan tetap terkontrolsesuai pada titik optimum untuk penetasan telur ayam yaitu pada suhu 37-40°C. Selain itu data suhu dankelembaban juga akan dikirimkan ke sistem IoT dan catu daya (melalui single board computer). Selain membacanilai suhu dan kelembaban di dalam ruang penetasan, sistem ini juga akan mendeteksi adanya suara ayam yangtelah menetas dengan bantuan dari modul voice recognition. Hasil pengujian secara keseluruhan selama 39 haripenelitian dilakukan perlakuan pada telur dengan memberikan set point temperatur pada 37°C-38°C. Penentuanset point temperatur tersebut didapatkan dari berbagai macam literatur yang mengatakan suhu dapat ditetapkanpada 35°C-40°C. Untuk tingkat kelembaban pada ruang mesin penetas telur didapatkan pada nilai 43,10%-47%RH tanpa memberikan perlakuan khusus seperti menambahkan mist maker maupun kipas. Pada kondisiumum untuk melakukan penetasan telur diharuskan memberikan perlakuan khusus kepada telur hingga hari ke 18dengan kelembaban 50%-55%RH dan 60%-65%RH pada hari ke 19-21. Melakukan rancangan monitoring untukmesin penetas telur dapat dilakukan dengan menggunakan sensor DHT21. Potensi penetasan telur ayammenggunakan mesin penetas telur ayam yang telah diteliti hanya sebesar 3.33% saja dari total 60 telur yangditetaskan. Jumlah kecil dari telur yang dapat ditetaskan dikarenakan terdapat error pada saat proses penetasan,jika tidak terdapat error maka jumlah telur yang menetas akan memiliki potensi yang lebih besar. Elechouse VoiceRecognition Module V3 dapat mengenali suara anak ayam, akan tetapi kemampuannya masih terbatas karenamodul hanya dapat mengenali 7 pola suara disaat bersamaan.Kata kunci: DHT21, Arduino Nano, Elechouse Voice Recognition Module V3.ABSTRACTChicken is one of the sources of protein that is cheap and easy to obtain by the people of Indonesia. Along withthe rapid development and growth of Indonesia's population, this is directly proportional to the level of publicconsumption of meat, especially the need for chicken meat. Chickens can be easily bred by ordinary people andbreeders, to be able to incubate chicken eggs, it takes a place with a temperature and humidity that is suitable forchicken eggs to hatch. Hatching of chicken eggs takes 18–21 days, which means that the chicken eggs are in theincubator during this time, with the condition that the incubator must maintain the temperature and humidity init. This system will read the temperature and humidity values from the hatchery using the DHT21 sensor, thetemperature and humidity data will be used as a reference to control the actuator in the form of a relay connectedto the bulb. It is intended that the temperature in the hatchery remains controlled according to the optimum pointfor hatching chicken eggs, which is at a temperature of 37–40°C. In addition, temperature and humidity data willalso be sent to the IoT system and power supply (via a single-board computer). In addition to reading thetemperature and humidity values in the hatchery, this system will also detect the sounds of hatching chickens withthe help of the voice recognition module. The overall test results for 39 days of the study were carried out on eggsby giving a temperature set point at 37°C–38°C. The determination of the temperature set point is obtained fromvarious literatures which says that the temperature can be set at 35°C–40°C. The humidity level in the eggincubator room was obtained at a value of 43.10%–47%RH without giving special treatment such as adding amist maker or fan. In general, conditions for hatching eggs require giving special treatment to eggs until day 18with a humidity of 50%–55%RH and 60%–65%RH on day 19–21. Carrying out monitoring designs for eggincubators can be done using the DHT21 sensor. The potential for hatching chicken eggs using a chicken eggincubator that has been studied is only 3.33% of the total 60 eggs hatched. The small number of eggs that can behatched is due to an error during the hatchin
SISTEM MONITORING JARAK DEKAT DAN PENDETEKSI SUARA BERBASIS MIKROKONTROLER ARDUINO NANO UNTUK MESIN PENETAS TELUR AYAM Muhammad Zein; Akhmad Zainuri; Onny Setyawati
Jurnal Mahasiswa TEUB Vol. 10 No. 3 (2022)
Publisher : Jurnal Mahasiswa TEUB

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

ABSTRAKAyam merupakan salah satu sumber protein yang murah dan mudah didapatkan oleh masyarakat Indonesia.Seiring perkembangan dan pertumbuhan penduduk Indonesia yang sangat pesat, hal ini berbanding lurus padatingkat konsumsi masyarakat pada daging khususnya pada kebutuhan daging ayam. Ayam dapatdikembangbiakkan dengan mudah oleh masyarakat biasa maupun peternak, untuk dapat menetaskan telur ayamdibutuhkan tempat dengan suhu dan kelembaban yang sesuai dengan telur ayam agar dapat menetas. Penetasantelur ayam membutuhkan waktu berkisar 18-21 hari, yang artinya telur ayam berada di dalam mesin penetas telurselama selang waktu tersebut dengan kondisi mesin penetas telur harus menjaga suhu dan kelembaban didalamnya. Pada sistem ini akan membaca nilai suhu dan kelembaban dari ruang penetasan dengan menggunakansensor DHT21, data suhu dan kelembaban tersebut akan digunakan sebagai acuan untuk mengontrol aktuatorberupa relay yang terhubung pada bohlam. Hal tersebut bertujuan agar suhu pada ruang penetasan tetap terkontrolsesuai pada titik optimum untuk penetasan telur ayam yaitu pada suhu 37-40°C. Selain itu data suhu dankelembaban juga akan dikirimkan ke sistem IoT dan catu daya (melalui single board computer). Selain membacanilai suhu dan kelembaban di dalam ruang penetasan, sistem ini juga akan mendeteksi adanya suara ayam yangtelah menetas dengan bantuan dari modul voice recognition. Hasil pengujian secara keseluruhan selama 39 haripenelitian dilakukan perlakuan pada telur dengan memberikan set point temperatur pada 37°C-38°C. Penentuanset point temperatur tersebut didapatkan dari berbagai macam literatur yang mengatakan suhu dapat ditetapkanpada 35°C-40°C. Untuk tingkat kelembaban pada ruang mesin penetas telur didapatkan pada nilai 43,10%-47%RH tanpa memberikan perlakuan khusus seperti menambahkan mist maker maupun kipas. Pada kondisiumum untuk melakukan penetasan telur diharuskan memberikan perlakuan khusus kepada telur hingga hari ke 18dengan kelembaban 50%-55%RH dan 60%-65%RH pada hari ke 19-21. Melakukan rancangan monitoring untukmesin penetas telur dapat dilakukan dengan menggunakan sensor DHT21. Potensi penetasan telur ayammenggunakan mesin penetas telur ayam yang telah diteliti hanya sebesar 3.33% saja dari total 60 telur yangditetaskan. Jumlah kecil dari telur yang dapat ditetaskan dikarenakan terdapat error pada saat proses penetasan,jika tidak terdapat error maka jumlah telur yang menetas akan memiliki potensi yang lebih besar. Elechouse VoiceRecognition Module V3 dapat mengenali suara anak ayam, akan tetapi kemampuannya masih terbatas karenamodul hanya dapat mengenali 7 pola suara disaat bersamaan.Kata kunci: DHT21, Arduino Nano, Elechouse Voice Recognition Module V3.ABSTRACTChicken is one of the sources of protein that is cheap and easy to obtain by the people of Indonesia. Along withthe rapid development and growth of Indonesia's population, this is directly proportional to the level of publicconsumption of meat, especially the need for chicken meat. Chickens can be easily bred by ordinary people andbreeders, to be able to incubate chicken eggs, it takes a place with a temperature and humidity that is suitable forchicken eggs to hatch. Hatching of chicken eggs takes 18–21 days, which means that the chicken eggs are in theincubator during this time, with the condition that the incubator must maintain the temperature and humidity init. This system will read the temperature and humidity values from the hatchery using the DHT21 sensor, thetemperature and humidity data will be used as a reference to control the actuator in the form of a relay connectedto the bulb. It is intended that the temperature in the hatchery remains controlled according to the optimum pointfor hatching chicken eggs, which is at a temperature of 37–40°C. In addition, temperature and humidity data willalso be sent to the IoT system and power supply (via a single-board computer). In addition to reading thetemperature and humidity values in the hatchery, this system will also detect the sounds of hatching chickens withthe help of the voice recognition module. The overall test results for 39 days of the study were carried out on eggsby giving a temperature set point at 37°C–38°C. The determination of the temperature set point is obtained fromvarious literatures which says that the temperature can be set at 35°C–40°C. The humidity level in the eggincubator room was obtained at a value of 43.10%–47%RH without giving special treatment such as adding amist maker or fan. In general, conditions for hatching eggs require giving special treatment to eggs until day 18with a humidity of 50%–55%RH and 60%–65%RH on day 19–21. Carrying out monitoring designs for eggincubators can be done using the DHT21 sensor. The potential for hatching chicken eggs using a chicken eggincubator that has been studied is only 3.33% of the total 60 eggs hatched. The small number of eggs that can behatched is due to an error during the hatchin
KOMUNIKASI ANTAR NODE MELALUI BLUETOOTH UNTUK MONITORING KELEMBABAN TANAH DAN SUHU PADA GREENHOUSE BERBASIS MIKROKONTROLER Milendy Arifputra Pamungkas; Onny Setyawati; Raden Arief Setyawan
Jurnal Mahasiswa TEUB Vol. 10 No. 4 (2022)
Publisher : Jurnal Mahasiswa TEUB

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

Greenhouse is one of the modern methods of plant cultivation by manipulating environmental conditions according to the desired conditions. To produce healthy and fertile greenhouse plants, several factors are needed, such as temperature, sunlight, water, and soil moisture according to the type of plant. In this study, the design of a sensor node system was carried out as a monitoring of soil moisture and temperature in the greenhouse. In this design, the DHT22 sensor is used as a temperature and humidity detector, capacitive soil moisture sensor SEN0193 as a greenhouse plant soil moisture detector. The readings from the sensor will be processed by the ESP32 microcontroller so that it can be understood by the user, then sends the data to the pump controller node as input in the form of sensor data. The test was carried out several times to find that the output data from the sensor node was data that was in accordance with the circumstances. The soil moisture sensor test SEN0193 was compared with a 4 in 1 soil meter to obtain an average error of 1.15%. The DHT22 temperature sensor test was compared with a temperature thermometer
RANCANG BANGUN SISTEM MONITORING PENYIRAMAN OTOMATIS GREENHOUSE BERBASIS IOT DENGAN WEB SERVER Muhamad Ilham; Onny Setyawati; Raden Arief Setyawan
Jurnal Mahasiswa TEUB Vol. 10 No. 4 (2022)
Publisher : Jurnal Mahasiswa TEUB

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

Greenhouse can be made according to the conditions of the season for certain plants as expected, namely by adjusting the amount of soil moisture and temperature. The methodology used in regulating soil temperature and humidity is to make an automatic greenhouse watering device with a web server. To detect temperature using DHT22 and soil moisture using a capacitive sensor v1.2. For actuator, it uses two pumps, namely a water pump and a mist pump. So that the sensor and actuator output can be monitored and stored properly, a monitoring system for temperature and soil moisture in the greenhouse is designed using MQTT communication. Data from the controller node will be processed and sent using an ESP32 microcontroller connected by wifi to the Thingsboard server using MQTT communication. In this system, the web werver delay test, data usage, and testing monitor sensor values and monitoractuator conditions are carried out. From the data from the web server delay test results and the data usage that has been tested, the system takes 2-3 seconds in a single data transfer to the Thingsboard server and data usage in one month requires 386MB of internet data. While testing the sensor values and actuator conditions, the system is able to provide real-time responses and is stored on the Thingsboard server as a monitoring tool in the greenhouse. Keywords: Greenhouse, web server, monitoring
SISTEM MONITORING BERAT DAN TAG RFID PADA ALAT RECORDING BOBOT BADAN SAPI BERBASIS INTERNET OF THINGS Effan Akbartama; Adharul Muttaqin; Onny Setyawati
Jurnal Mahasiswa TEUB Vol. 10 No. 6 (2022)
Publisher : Jurnal Mahasiswa TEUB

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

Recording is all kinds of recording activities such as identification activities, genealogy records, production and reproduction records, as well as health records. This activity is the basis for the fattening process on cattle farms. One of the important measurement criteria in animals is weight. Weight measurements must be accurate and also require an adequate monitoring system so that the recording results are easy to monitor. Accurate and easy-to-monitor recording results will make maintenance management optimal so as to make optimal growth of cattle as well. However, the current traditional breeder recording equipment used monitoring system is still not optimal. Therefore, the purpose of this research is to design a Monitoring System for Cattle Body Weight Recording Devices Based on the Internet of Things. The system is equipped with realtime data transmission which is stored in a database and displayed on the website. The database is created using services from firebase. With IoT monitoring, cattle weight measurement values, RFID tag data, measurement time, and age can be accessed via a website that aims to make it easier for users to view realtime data and recapitulate measurement data. The results of the research conducted, the system runs according to design. In the test of sending heavy data, RFID tag data, time and date into firebase the success rate is 100% and website functionality also has 100% success. The data obtained from testing the delay in sending data to firebase obtained an average delay of 0.97 seconds. the highest delay value is 1.36 seconds and the lowest value is 0.72 seconds. The throughput on the system is 1990 bits/sec. Keywords : Recording, Weight, Monitoring, Internet of Things, firebase
RANCANG BANGUN SISTEM RECORDING BOBOT BADAN SAPI BERBASIS INTERNET OF THINGS Citra Trilaksana; Adharul Muttaqin; Onny Setyawati
Jurnal Mahasiswa TEUB Vol. 10 No. 6 (2022)
Publisher : Jurnal Mahasiswa TEUB

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

In 2021, the trend for beef production in indonesia is likely to decline, not in line with the increase in the cattle population. According to the Directorate General of Livestock and Animal Health, Indonesia's beef production was 437,783.23 tons, a decrease of 3.44 percent compared to 2020 of 453,418 tons (Qodriyatun, 2022). The reduced supply of beef in Indonesia is due to the weak synchronization between reproduction management and butchering. The reason is that 78% of national beef production comes from smallholder farms (Zakiah, et al, 2017). In the recording studio, the people are still getting less attention. Recording is all types of recording activities such as assistance activities, genealogical records, production and reproduction records, maintenance management records and livestock health records in certain populations. The Internet of Things (IoT) can be applied to various aspects, especially as a system for recording, storing, sorting and processing data. This application can be used in the system for recording body weight of cattle. For this reason, a system for recording body weight based on the internet of things was designed. The internet of things based body weight recording system uses 2 Load Cell sensors to weigh the body weight of the cow and an RFID sensor to read the identity of the cow, besides that the sensor system has a website as a user interface. It is hoped that this application can increase the efficiency of the process of recording body weight of cattle and produce an intelligent tool system. Keywords: IoT, Recording, Load Cell, RFID
RANCANG BANGUN ESTIMATOR WAKTU OPERASIONAL DAN MANAJEMEN BEBAN LISTRIK PADA DC HOUSE Dzulfikar Ontoseno; Akhmad Zainuri; Onny Setyawati
Jurnal Mahasiswa TEUB Vol. 11 No. 3 (2023)
Publisher : Jurnal Mahasiswa TEUB

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

Solar panels is a renewable energy generator that utilizes energy from sunlight. One example of its application is the DC House. The working system of solar panels in DC homes is not much different from solar panels in general. Batteries have an important role in the PLTS system. In the utilization of the battery there are several things that need to be considered including the discharge limit and charging limit in the form of usage cycles. If there is a discharge process or an overcharging process, it can cause damage to the battery. So we need a system that can prevent these things from happening, one of which is by implementing a feature to determine the estimated operational time of the battery and electrical load management. This study discusses the design of estimator tools and managing electrical loads in DC Houses. The design of this tool includes time estimation, current sensor, voltage sensor and microcontroller as automatic load control. The current sensor and voltage sensor data taken from the test object, namely the battery, the incoming and outgoing energy will be known. This energy will later be used to determine the estimated operational time and also used as a parameter for automatic load control. When the battery energy is below the discharge limit, the microcontroller will give an order to cut off the electrical energy flowing to the load. So with this system will prevent the use of electrical energy that is not reasonable. The results of this study found that the level of accuracy on the voltage sensor 1 was 97.97% and the accuracy level on the voltage sensor 2 was 98.91%. Then the level of accuracy on the current sensor ACS712-30A is 97.44% while on the current sensor ACS758-100A the level of accuracy is 93.32%. The results of making this operational time estimator system have an accuracy rate of 97.43% and the electrical load management is functioning properly according to the program. Keywords: battery, time estimator, sensor, electrical load management, DC House
Co-Authors Abdul Wachid Syamroni Abdulhafidz Muhammad Abdullah Rasyid Achmad Basuki Achmad Basuki Adharul Muttaqin Agripina Noreen Mahardika Ahmad Badrus Sholeh Aji Seto Arifianto Akhdan Fadhli Zaim Alfi Maghfirah Alva Kosasih Andhika Pramana Putra Andiyansyah, Rizki Novan Andreas Horaciyo Simanjuntak Andriana Kusuma Dewi Angger Baskoro Anindita, Ruth Astari Ardytyan, Reiza Hafid Aziza, Miladina Rizka Azzurri, Dean Fachruddin Bahr, Andreas Bangert, Axel Brahmada, Yohanes Valerio Citra Trilaksana David Stefano Didik R. Santoso Didik Rahadi S Didik Rahadi S. Didik Rahadi S. Djul Fikry Budiman, Djul Fikry Dody Susilo Dzulfikar Ontoseno Edinar Valiant Hawali Effan Akbartama Eka Maulana Erfan Achmad Dahlan Erick Ilmiawan Ibrahim Erny Anugrahany Fitri Fitri Fransiska Sisilia Mukti Frediawan Yuniar Hadi Suyono Hadi Suyono Hariawan, Bramantia Rayhan Hario Partiansyah, Fakhriy Helmy Mukti Himawan Helmy Mukti Himawan, Helmy Mukti Herman Tolle Hermawan Arief Putranto Irawan, Novta Danyel Iswanjaya, Septian Ivana Varita Julius St., M. Juma'inah, n/a Jumiadi, Jumiadi Kusuma Jayadi Laila Roudhotul Karimah Lily M. Sikome M. Aziz Muslim M. Julius St M. Julius St M. Julius St. Maulana, Eka Maulana, Eka Milendy Arifputra Pamungkas Mira Orisa Moch. Agus Choiron Mochammad Nur Arifin Moechammad Sarosa Mohammad Wahyusuf Hidayatulloh Muhamad Ilham Muhammad Arsyil Khahaji Muhammad Athalla Muhammad Julius St. Muhammad Zein Muhammad, Abdur R. mukhlison st n/a Nurussa’adah Nadia Alifia Hadiyati Nainaufal Hidayah Nanang Sulistiyanto Nimas Wahyu Choironik Novia Alifianti Novvy Nurdiana Dewi Nurus Sa'adah Nurussa’adah, n/a Pancawati Dessy Aryanti Pasaribu, Dimpos Fransiskus Xaverius Ponco Siwindarto Prasetya, Muchamad Alec Purnomo Budi S. Purnomo Budi Santoso Putranto, Hermawan Arief Raden Arief Setyawan Raden Setyawan Rahmadwati Rahmadwati Rahmadwati, n/a Rahmadwati, Rahmadwati Rahman Arifuddin Rangga Pahlevi Putra Regina Basaria Patrisia Rieke Adriati W. Rif'an, Mochammad Rini Nur Hasanah Riska Nurtantyo Sarbini Risty Jayanti Yuniar Rizky Agung Pratama Ruslan Affandi Ruth Astari Anindita Sandhagen, Carl Septian Iswanjaya Shoffin Nahwa Utama Sholeh Hadi Pramono Susanto, Septian Alan Suyono, Hadi Syaiful Amri Syaiful Rachman Ubaid Ikbar Najib Nur Fauzi Utomo, Arie Cahyo Vika Mubarokah W., Rieke Adriati Wahyu Dirgantara Wijono Wijono Wijono Wijono Wijono Wijono Wijono Y. Reza Angga Sukma Zainul Abidin Zainul Abidin Zainuri, Akhmad