I Putu Agung Bayupati
Program Studi Teknologi Informasi, Fakultas Teknik, Universitas Udayana

Published : 65 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Training VGG16, MobileNetV1 and Simple CNN Models from Scratch for Balinese Inscription Recognition Ida Ayu Putu Febri Imawati; Made Sudarma; I Ketut Gede Darma Putra; I Putu Agung Bayupati; Minho Jo
Lontar Komputer : Jurnal Ilmiah Teknologi Informasi Vol 15 No 03 (2024): Vol.15, No. 3 December 2024
Publisher : Institute for Research and Community Services, Udayana University

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.24843/LKJITI.2024.v15.i03.p01

Abstract

Many inscriptions in Bali are damaged. Damage to these inscriptions can be caused by natural disasters, overgrown with moss, algae and bacteria. Damage can also be caused by warfare, or deliberately erased. This inscription contains the knowledge and civilization of the ancestors so it is very important to be able to read its contents. Based on these problems, this research conducted training from scratch on 3 CNN models namely VGG16, MobileNetV1 and Simple CNN. The purpose of this research is to choose one recognition model that has the best performance and produces the highest recognition rate to proceed to the inscription restoration stage. The dataset used is Balinese inscription: Isolated Character Recognition of Balinese Script in Palm Leaf Manuscript Images in Challenge-3-ForTrain.zip. The training process of three models with five different training files resulted in the finding that VGG16 has the highest accuracy in the training, testing, and validation process with the least number of epochs. This research contributes to specific datasets, such as the Isolated Character Recognition of Balinese Script using the training process from the beginning of VGG16, involving all stages of the process. It will produce the best model performance compared to the other four training models.
News Recommendation System Using Content-Based Filtering through RSS Customization Service Nandita, Ida Ayu Widya; Dwi Suarjaya, I Made Agus; Bayupati, I Putu Agung
Journal of Applied Informatics and Computing Vol. 9 No. 4 (2025): August 2025
Publisher : Politeknik Negeri Batam

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30871/jaic.v9i4.9807

Abstract

News refers to stories or information about current events or incidents. Several news websites offer a service called RSS (Really Simple Syndication), which enables users to easily receive updates on the latest news. News RSS feeds are typically generated based on the order of publication time or general categories. The content of these news RSS feeds can be customized to align with user interests or preferences. A recommendation system can be utilized as an approach to customize RSS feeds. This study was conducted to design a system capable of generating RSS feeds based on news recommendations using the content-based TF-IDF method and cosine similarity. Data scraping and preprocessing of news articles from various RSS feeds of Indonesian news websites were automated using cron jobs. Content-based filtering modeling was carried out using TF-IDF and cosine similarity. The design and customization of RSS feeds were implemented in a Flask application and packaged within several endpoints. The recommendations generated based on user click interactions were reasonably relevant, as they successfully presented news titles similar to the clicked articles, with cosine similarity scores ranging from 0.2 to 1.0. The majority of respondents agreed that the recommended news articles were relevant to the articles they had clicked and aligned with their interests. The RSS feed evaluation yielded highly satisfactory results, with all aspects assessed in the user acceptance survey achieving an average score exceeding 80%, and the overall results of the customer satisfaction survey indicated scores starting from 90%.
Perbandingan Metode Artificial Neural Network dan Convolutional Neural Network untuk Memprediksi Jumlah Distribusi Air di PDAM Kota Denpasar Bayupati, I Putu Agung; Dewi, Anak Agung Ayu Sintya; Wirdiani, Ni Kadek Ayu
JST (Jurnal Sains dan Teknologi) Vol. 12 No. 2 (2023): July
Publisher : Universitas Pendidikan Ganesha

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.23887/jstundiksha.v12i2.47800

Abstract

Kelangsungan hidup di dunia pasti tidak akan bisa terlepas dari penggunaan air. Seiring dengan berkembangnya zaman tentu akan diikuti dengan bertambahnya jumlah penduduk yang juga akan berdampak terhadap meningkatnya kebutuhan air bersih. PDAM merupakan salah satu instansi yang melayani ketersediaan air bersih. Tujuan diadakannya penelitian ini untuk melakukan peramalan terhadap jumlah distribusi air di PDAM Kota Denpasar dengan membandingkan metode ANN (Artificial Neural Network) serta CNN (Convolutional Neural Network) yang juga melibatkan proses seleksi fitur menggunakan metode SFS (Sequential Forward Selection). Pendekatan kuantitatif digunakan untuk melakukan proses peramalan terhadap jumlah distribusi air (Y) dengan melibatkan fitur jumlah produksi (X1), kebocoran (X2), pembelian (X3), dan pelanggan air (x4). Hasil seleksi fitur dengan metode SFS menujukkan bahwa jumlah produksi air (X1) dan kebocoran air (X2) dengan tingkat kesalahan sebesar 0.031069 tepat digunakan untuk membentuk model peramalan jumlah distribusi air dengan metode ANN yang menghasilkan nilai MSE dan MAPE berturut-turut sebesar 0.040 serta 2.02%. Berdasarkan hasil yang diperoleh, model yang dikembangkan termasuk model peramalan yang sangat baik, sehingga tepat digunakan untuk melakukan proses peramalan jumlah distribusi air.
Pengembangan Business Intelligence Dashboard untuk Monitoring Aktivitas Pariwisata (Studi Kasus: Dinas Pariwisata Provinsi Bali) Saragih, Evan Himawan; Bayupati, I Putu Agung; Putri, Gusti Agung Ayu
Jurnal Teknologi Informasi dan Ilmu Komputer Vol 8 No 6: Desember 2021
Publisher : Fakultas Ilmu Komputer, Universitas Brawijaya

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.25126/jtiik.2021863755

Abstract

Bali merupakan satu dari beberapa destinasi wisata yang mendatangkan wisatawan nusantara dan mancanegara di Indonesia. Pada tahun 2017, wisatawan mancanegara yang berkunjung ke Bali adalah sebesar 5,6 juta orang dan didominasi oleh wisatawan dari negara Cina. Jumlah kunjungan pada seluruh objek wisata yang ada di Bali tahun 2017 mencapai 17,8 juta kunjungan. Berdasarkan hal tersebut, pemerintah daerah membutuhkan strategi dan keputusan dalam pembangunan sarana dan prasarana yang dapat mendukung pengembangan dan kemajuan pariwisata di Bali. Pemanfaatan teknologi business intelligence dalam menganalisa data dalam jumlah yang besar akan membantu. Penelitian ini mengembangkan sistem informasi memakai pendekatan BI dalam menganalisis data pariwisata Bali dan manajemen data dengan menggantikan pemakaian kertas menjadi media komputer sehingga data tidak hilang begitu saja, namun digunakan sebagai acuan saat menentukan keputusan. Dalam pengembangan sistem digunakan beberapa metode diantaranya framework Codeigniter dengan arsitektur web MVC (Model, View, Controller), OLAP (On-line Analytical Processing) untuk menampilkan visualisasi data, dan double exponential smoothing menampilkan hasil peramalan data pada periode berikutnya. Nilai error dari metode peramalan tersebut dapat dihitung menggunakan algoritma Mean Absolute Percentage Error. Agar dapat mengetahui tingkat pemanfaatan terhadap pengembangan sistem ini, maka digunakan metode black box testing, usability testing, dan user acceptance test untuk mengetahui kualitas dan fungsionalitas sistem dari segi input, output, dan penilaian oleh pengguna sistem. Penelitian ini memperlihatkan bahwa pemakaian teknologi BI tidak hanya mendukung pada perusahaan namun juga mendukung pada bidang pariwisata, pemerintahan dan layanan. Sistem yang dikembangkan dapat membantu proses pemantauan pariwisata dan pendukung dalam pengambilan keputusan. AbstractBali is one of several tourist destinations that bring domestic and foreign tourists to Indonesia. In 2017, there were 5.6 million foreign tourists visiting Bali and dominated by tourists from China. The number of visits to all tourist objects in Bali in 2017 reached 17.8 million visits. Based on this, local governments need strategies and decisions in the development of facilities and infrastructure that can support the development and progress of tourism in Bali. The use of business intelligence technology in analyzing large amounts of data will help. This study develops an information system using the BI approach in analyzing Bali tourism data and data management by replacing paper use as computer media so that data does not just disappear, but is used as a reference when making decisions. In system development, several methods are used including the Codeigniter framework with the MVC web architecture (Model, View, Controller), OLAP (On-line Analytical Processing) to display data visualization, and double exponential smoothing to display the results of forecasting data in the next period. The error value of this forecasting method can be calculated using the Mean Absolute Percentage Error algorithm. In order to determine the level of utilization of this system development, black box testing, usability testing and user acceptance tests are used to determine the quality and functionality of the system in terms of input, output, and assessment by system users. This study shows that the use of BI technology is not only supportive of companies but also supports tourism, government and services. The system developed can assist the tourism monitoring process and support decision making.
Usability Testing pada Simulator Media Pembelajaran Lalu Lintas Berbasis Android Saputra, I Made Ari; Bayupati, I Putu Agung; Rusjayanthi, Ni Kadek Dwi
Jurnal Teknologi Informasi dan Ilmu Komputer Vol 8 No 2: April 2021
Publisher : Fakultas Ilmu Komputer, Universitas Brawijaya

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.25126/jtiik.2021824271

Abstract

Kurangnya kesadaran masyarakat terhadap aturan lalu lintas merupakan penyebab sering terjadinya kecelakaan di Indonesia. Masyarakat kesulitan untuk mempelajari aturan lalu lintas pada dunia nyata secara langsung karena resiko kecelakaan. Masyarakat Indonesia perlu mendapat edukasi lebih terhadap aturan lalu lintas yang ada.  Simulator lalu lintas merupakan media pembelajaran yang ditunjukan kepada masyarakat agar masyarakat dapat mempelajari aturan lalu lintas secara virtual. Simulator lalu lintas dapat digunakan oleh masyarakat untuk melakukan eksplorasi tentang fungsi rambu lalu lintas dan marka jalan yang ada pada dunia nyata tanpa adanya risiko. Simulator lalu lintas menggunakan metode usability testing untuk mengukur dampak penggunaan simulator lalu lintas terhadap pengetahuan user. Metodologi penelitian simulator lalu lintas menggunakan metode waterfall. Pengujian usability testing pada simulator lalu lintas menunjukan hasil yang baik. Simulator edukasi lalu lintas dapat meningkatkan pengetahuan user tentang rambu lalu lintas dan marka jalan. Simulator lalu lintas dapat memberikan gambaran tentang aturan lalu lintas kepada masyarakat yang akan mengikuti ujian SIM (Surat Ijin Mengemudi). AbstractThe lack of public awareness about traffic regulation is a cause of frequent traffic accidents in Indonesia. People find it difficult to learn traffic rules in the real world directly because of the risk of accidents. Indonesian people need to get more education about the existing traffic rules. The traffic simulator is a learning media that is shown to the public so that people can learn about traffic rules virtually. Furthermore, the traffic simulators can be used by the people to explore the functions of traffic signs and road markings in the real world without any risk. The traffic simulator uses the usability testing method to measure the impact of using the traffic simulator on user knowledge. The research method of traffic simulator is waterfall method. Usability testing on the traffic simulator shows good results. Traffic education simulators can increase user knowledge about traffic signs and road marking. Traffic simulators can provide an overview of traffic rules to people who will take the SIM (Driving License) exam.
Co-Authors Adie Wahyudi Oktavia Gama Aditya, I Nyoman Tri Agus Gede Adi Prayoga Akane Sasaoka Alesia Arum Frederika Anak Agung Ketut Agung Cahyawan Wiranatha Anak Agung Kompiang Oka Sudana Arsa, Dewa Made Sri Ayu Wirdiani Bimantara, Ranggashakti Christine Regilia Suwu Deria Dwi Antari Desak Ayu Sista Dewi Desy Purnami Singgih Putri Dewi, Anak Agung Ayu Sintya Dina Wahyuni Puteri Dwi Rusjayanthi, Dwi Dwi Suarjaya, I Made Agus Ekanyana Nugraha, I Gede Bagus Erha Syaifuddin Hassant’R Eva Martina Sitorus Frederika, Alesia Arum G M Arya Sasmita Gede Indra Raditya Martha Gunawan, I Kadek Gusti Agung Ayu Putri I Dewa Nym. Nurweda P., I G A A Diah Indrayani I Gede Sujana Eka Putra, I Gede Sujana Eka I Gusti Ayu Agung Diatri Indradewi I Gusti Lanang Trisna Sumantara I Kadek Ari Melinia Antara I Kadek Gunawan I Ketut Adi Purnawan I ketut Gede Darma Putra I Made Agus Dwi Suarjaya I Made Budi Adnyana I Made Mertha Prayuda I Made Sukarsa I Made Suryanata I Made Suwija Putra I Nyoman Piarsa I Putu Ade Ambara Putra I Putu Arya Dharmaadi I Putu Bayu Krisnawan I Putu Cahya Prawira I Putu Pratama Andika I Putu Yudha Ariatmaja I Wayan Agus Krisna Apriana I Wayan Andis Indrawan I Wayan Dharma Satriawan I Wayan Widiana Ida Ayu Putu Febri Imawati Imelda Alvionita Tarigan Kade Bramasta Vikana Putra Kadek Suar Wibawa Komang Gede Kurniadi Kurniawan, Laurensius Adi Laurensius Adi Kurniawan Made Sudarma Made Wibawa Minho Jo Nandita, Ida Ayu Widya Ni Kadek Ariasih, Ni Kadek Ni Kadek Ayu Anggraeni Ni Kadek Ayu Wirdiani Ni Kadek Rahayu Widya Utami Ni Luh Ketut Inggitarahayu Anggasemara Ni Made Meriliana Candra Devi Ni Wayan Wisswani Nyoman Purnama, Nyoman Philipus Novenando M Weking Putu Ary Setiyawan Putu Satya Saputra Putu Wira Buana Putu Wulan Dewi Prihandani Putu Yudha Yarcana Putut Rendra Wismawan Rusjayanthi, Ni Kadek Dwi Saputra, I Made Ari Saragih, Evan Himawan Susila, Anak Agung Ngurah Hary Vidya Chandradev Wira Buana Y. Haryo Sulistyanto Sunaryo Yonatan Adiwinata Yustisia, Putu Visvani