Claim Missing Document
Check
Articles

Found 4 Documents
Search
Journal : Contemporary Mathematics and Applications (ConMathA)

Pewarnaan Titik Ketakteraturan Lokal Inklusif pada Hasil Operasi Comb Graf Bintang Arika Indah Kristiana; Surya Indriani; Ermita Rizki Albirri
Contemporary Mathematics and Applications (ConMathA) Vol. 4 No. 1 (2022)
Publisher : Universitas Airlangga

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.20473/conmatha.v4i1.33606

Abstract

Let G(V,E) is a simple graph and connected where V(G) is vertex set and E(G) is edge set. An inclusive local irregularity vertex coloring is defined by a mapping l:V(G) à {1,2,…, k} as vertex labeling and wi : V(G) à N is function of inclusive local irregularity vertex coloring, with wi(v) = l(v) + ∑u∈N(v) l(u). In other words, an inclusive local irregularity vertex coloring is to assign a color to the graph with the resulting weight value by adding up the labels of the vertices that are neighbouring to its own label. The minimum number of colors produced from inclusive local irregularity vertex coloring of graph G is called inclusive chromatic number local irregularity, denoted by Xlisi(G). In this paper, we learn about the inclusive local irregularity vertex coloring and determine the chromatic number of comb product on star graph.
Pewarnaan Titik Ketakteraturan Lokal Inklusif pada Keluarga Graf Unicyclic Arika Indah Kristiana; Muhammad Gufronil Halim; Robiatul Adawiyah
Contemporary Mathematics and Applications (ConMathA) Vol. 4 No. 1 (2022)
Publisher : Universitas Airlangga

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.20473/conmatha.v4i1.33607

Abstract

The graph in this paper is a simple and connected graph with V(G) is vertex set and  E(G) is edge set. An inklusif local irregularity vertex coloring is defined should be maping l:V(G) à {1,2,…, k} as vertex labeling and wi : V(G) à N is function of inclusive local irregularity vertex coloring, with wi(v) = l(v) + ∑u∈N(v) l(u) in other words, an inclusive local irregularity vertex coloring is to assign a color to the graph with the resulting weight value by adding up the labels of the vertices that are should be neighboring to its own label. The minimum number of colors produced from inclusive local irregularity vertex coloring of graph G is called inclusive chromatic number local irregularity, denoted by Xlisi(G). Should be in this paper, we learn about the inclusive local irregularity vertex coloring and determine the chromatic number on unicyclic graphs.
Pewarnaan Titik Ketakteraturan Lokal pada Hasil Operasi Amalgamasi Titik Graf Lintasan Rafelita Faradila Sandi; Arika Indah Kristiana; Lioni Anka Monalisa; Slamin; Robiatul Adawiyah
Contemporary Mathematics and Applications (ConMathA) Vol. 5 No. 2 (2023)
Publisher : Universitas Airlangga

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.20473/conmatha.v5i2.47904

Abstract

Definition of graph is set pair (????(????),????(????)) where ????(????) is vertex set and ????(????) is edge set. A maping ???? : ????(????)→{1,2, … ,????} as label function and weight function ???? : ????(????)→???? is desined as ????(????)=Σ????∈????(????)????(????). The function ???? is called local irregularity vertex coloring if: (i) ????????????(????)=???????????? (???????????????? (????????) ;???????? ???????? ???????????????????? ????????????????????????????????) and (ii) for every ???????? ∈ ????(????),????(????) ≠ ????(????). The chromatic number of local irregularity vertex coloring denoted by ????????????????(????) is defined as ????????????????(????)=????????????{|????(????(????))|;???? ???????? ???????????????????? ???????????????????????????????????????????????? ???????????????????????? ????????????????????????????????}. The method used in this paper is pattern recognition and axiomatic deductive method. In this paper, we learn local irregularity vertex coloring of vertex amalgamation of path graph and determine the chromatic number on local irregularity vertex coloring of vertex amalgamation of path graph. This paper use vertex amalgamation of path graph (????????????????(???????? ,????,????)). The result of this study are expected to be used as basic studies and science development as well as applications related to local irregularity vertex coloring of vertex amalgamation of path graph.
Rainbow Connection on Amal(Fn,xz,m) Graphs and Amal(On,xz,m) Graphs Muhammad Usaid Hudloir; Dafik; Adawiyah, Robiatul; Rafiantika Megahnia Prihandini; Arika Indah Kristiana
Contemporary Mathematics and Applications (ConMathA) Vol. 6 No. 2 (2024)
Publisher : Universitas Airlangga

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.20473/conmatha.v6i2.56201

Abstract

Coloring graph is giving a color to a set of vertices and a set of edges on a graph. The condition for coloring a graph is that each color is different for each neighboring member graph. Coloring graph can be done by mapping a different color to each vertex or edge. Rainbow coloring is a type of rainbow connected with coloring edge. It ensures that every graph G has a rainbow path. A rainbow path is a path in a graph where no two vertices have the same color. The minimum number of colors in a rainbow connected graph is called the rainbow connection number denoted by rc(G). The graphs used in this study are the Amal(Fn,xz,m) graph and the Amal(On,xz,m) graph.
Co-Authors Afni, Anis Nur Agatha, Alvian Bagus Ahmad Aji Aima, Muslihatul Aji, Ahmad Arif Fatahillah Arifandi, Agus Asy’ari, Muhammad Lutfi Aziza, Adinda Putri Azizah, Zakiyah Lina Nur A’yun, Qurrotul Bunga Ayu Desy Permatasari, Bunga Ayu Cahyadewi, Karina Cindy Cici Fitri Lestari, Cici Fitri D Dimas, D D. Dafik Dafik Deddy Setiawan Deddy Setiawan Deddy Setyawan Desi Febriani Putri Devira Ayu Nurandari, Devira Ayu Dewi Santi, Dewi Dewi, Ernita Sukarno Dian Kurniati Didik Sugeng Pambudi Dimas Ardiansyah Ramadhan Dinar Dwi Yuliyanti Dinawati Trapsilasiwi Dliou, Kamal Dwi Agustin Retnowardani Dwi Roby Pramono Dwi Sylvia Hanafi Edy Wihardjo Eka Cahya Lestari, Eka Cahya Eka Wulandari Fauziah, Eka Wulandari Eko Gunariyanto Elsa Yuli Kurniawati Ema Desia Prajitiasari Erica Dian P Ermita Rizki Albirri Ernita Sukarno Dewi, Ernita Fatimah, Laila Nurul Fihrisi, Fathan Hobri I Made Tirta I Made Tirta Intan Nurul Awwaliyah Islamiah, Maulidi Arsih Umaroh Ja'far, Muhammad Jatmiko, Dhanar Dwi Hary Karina Cindy Cahyadewi Karuniaji Fitra Insani Khilyah Munawaroh Khusnul, Agustina Hotimatus Kurniawati, Elsa Yuli Kusbudiono Kusbudiono, Kusbudiono Kusumawati, Nurita Lestari, Deninta Dwi Ayu Lestari, Nurcholif Diah Sri Lioni Anka Monalisa, Lioni Anka Marmono Singgih Miftahul Jannah Mohammad Fadli Rahman Muhammad Gufronil Halim Muhammad Lutfi Asy’ari Muhammad Usaid Hudloir Murtini Murtini, Murtini Niswatul Imsiyah Nur Safrida, Lela Nurbuono, Mousthapaa Nurcholif Diah Sri Lestari Nurina Anggun Ratnaningtyas Nuroeni, Ilmiatun Osman, Sharifah Prahastiwi, Lusi Rizzami Pratiwi, Alfiani Dyah Prihandini, Rafiantika M. Prihandini, Rafiantika Megahniah Pujiyanto, Arif Putra, Aldi Maulana Qurrotul A’yun Rafelita Faradila Sandi Rafiantika Megahnia Prihandini Rahmawati, Mira Randi Pratama Murtikusuma Ratna Dwi Christyanti, Ratna Dwi Retno Nur Khasanah Ridho Alfarisi Ridho Alfarisi, Ridho Ridlo, Zainur Rasyid Rizky Astarina, Rizky Robiatul Adawiyah Robiatul Adawiyah S Suharto S Sunardi S Susanto Saddam Hussen Santoso, Aji Mansur Saputra, Guntari Setiawan, Renal Heldi Siddiqui, M. Kamran Siti Aisyah Slamin Sumani . Surya Indriani Susanto Susanto Susanto, Arnis Budi Susi Setiawani Syahputri, Vika Thoyibah, Fifi Tika Nurpitasari Titik Sugiarti Titin Kartini Toto Bara Setiawan Umi Azizah Anwar WIHARDJO, EDY Wirdah Pramita N Yanuarsih, Elly Zainur Rasyid Ridlo