Claim Missing Document
Check
Articles

Found 31 Documents
Search

Inverse Kinematic Algorithm with Newton-Raphson Method iteration to Control Robot Position and Orientation based on R programming language Budiman Nasution; Lulut Alfaris; Ruben Cornelius Siagian
IJCCS (Indonesian Journal of Computing and Cybernetics Systems) Vol 17, No 2 (2023): April
Publisher : IndoCEISS in colaboration with Universitas Gadjah Mada, Indonesia.

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.22146/ijccs.82781

Abstract

 The homogeneous transform program is a function used to calculate the homogeneous transformation matrix at a specific position and orientation of a three-link manipulator. The homogeneous transformation matrix is a 4x4 matrix used to represent the position and orientation of an object in three-dimensional space. In the program, the rotation matrix R is calculated using the Euler formula and stored in a 4x4 matrix along with the position coordinates. The Jacobian matrix function calculates the Jacobian matrix at a specific position and orientation of a three-link manipulator using the homogeneous transformation matrix. The Euler formula used in the program is based on the rotation matrices for rotations around the x, y, and z-axes. The output of these functions can be useful for future research in developing advanced manipulators with improved accuracy and flexibility. Research gaps in exploring the limitations of these functions in real-world applications, particularly in scenarios involving complex manipulator configurations and environmental factors.
Investigating the Relationship between Climate Variables and Solar Activity: A Regression Analysis Approach Budiman Nasution; Goldberd Harmuda Duva Sinaga; Arip Nurahman; Ruben Cornelius Siagian
JRST (Jurnal Riset Sains dan Teknologi) Volume 7 No. 2 September 2023: JRST
Publisher : Universitas Muhammadiyah Purwokerto

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30595/jrst.v7i2.16922

Abstract

This study employs regression analysis to investigate the relationships between carbon dioxide levels, sunspot occurrences, and global temperatures, encompassing both land and sea. By uncovering these connections, the study contributes to our understanding of climate change and solar phenomena interactions. The primary objective is to reveal the intricate associations between these elements, potentially influencing climate change and solar activity. The study's outcomes have significant implications for climate change research and solar activity monitoring. The positive correlation between carbon dioxide concentration and ocean temperatures emphasizes the impact of atmospheric carbon dioxide on sea temperature fluctuations. Conversely, the inverse correlation between sunspot numbers and land/global temperatures suggests solar activity's potential role in shaping Earth's temperature oscillations. This research introduces novelty by concurrently investigating the interconnectedness of these factors. The study establishes substantial connections between carbon dioxide concentration, sunspot numbers, and global temperatures. While the models shed light on some variability, the complexity of climate change and solar activity calls for further exploration of additional factors. This underscores the need to consider multiple variables for a comprehensive understanding. Further research is recommended to enhance the precision of these models.
Relationship Between BE4DBE2 and Variables n and z: A Comprehensive Analysis Using Linear Regression, Nonparametric Regression, Naive Bayes Classification, Decision Tree Analysis, SVM Analysis, K-Means Clustering, and Bayesian Regression Budiman Nasution; Winsyahputra Ritonga; Ruben Cornelius Siagian; Paulus Dolfie Pandara; Lulut Alfaris; Aldi Cahya Muhammad; Arip Nurahman
Jurnal Penelitian Pendidikan IPA Vol. 9 No. 11 (2023): November
Publisher : Postgraduate, University of Mataram

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.29303/jppipa.v9i11.4483

Abstract

This research employed various statistical techniques, including linear regression, nonparametric regression, Naive Bayes classification, decision tree analysis, Support Vector Machine (SVM) analysis, k-means clustering, and Bayesian regression, to analyze nuclear data. The research aims to explore the relationships between variables, predict binding energy, classify nuclear data, and identify similar groups. The research results revealed that linear regression indicated a significant influence of the intercept and predictor variable 'n' on the variable 'BE4DBE2,' while the variable 'z' was not significant. However, the overall model had limited explanatory power. Nonparametric regression with smoothing functions effectively modeled the relationship between 'BE4DBE2' and variables 'n' and 'z,' explaining approximately 11% of the variability in the response variable. Classification using Naive Bayes successfully categorized nuclear data based on 'n' and 'z,' revealing their relationship. Decision tree analysis evaluated the performance of this classification model and provided insights into accuracy, agreement, sensitivity, specificity, precision, and negative predictive value. SVM analysis successfully built an accurate SVM model with a linear kernel, classifying nuclear data while depicting decision boundaries and support vectors. K-means clustering grouped nuclear data based on 'n' and 'z,' revealing distinct characteristics and enabling the identification of similar clusters. The Bayesian regression model predicted binding energy using 'n' and 'z' as independent variables, capturing the Gaussian distribution of 'BE4DBE2' and providing statistical measures for parameter estimation. Ccomprehensives nuclear data analysis using various statistical approaches provides valuable insights into relationships, predictions, classification, and clustering, contributing to the advancement of nuclear science and facilitating further research in this field.
Relationship Between BE4DBE2 and Variables n and z: A Comprehensive Analysis Using Linear Regression, Nonparametric Regression, Naive Bayes Classification, Decision Tree Analysis, SVM Analysis, K-Means Clustering, and Bayesian Regression Budiman Nasution; Winsyahputra Ritonga; Ruben Cornelius Siagian; Paulus Dolfie Pandara; Lulut Alfaris; Aldi Cahya Muhammad; Arip Nurahman
Jurnal Penelitian Pendidikan IPA Vol 9 No 11 (2023): November
Publisher : Postgraduate, University of Mataram

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.29303/jppipa.v9i11.4483

Abstract

This research employed various statistical techniques, including linear regression, nonparametric regression, Naive Bayes classification, decision tree analysis, Support Vector Machine (SVM) analysis, k-means clustering, and Bayesian regression, to analyze nuclear data. The research aims to explore the relationships between variables, predict binding energy, classify nuclear data, and identify similar groups. The research results revealed that linear regression indicated a significant influence of the intercept and predictor variable 'n' on the variable 'BE4DBE2,' while the variable 'z' was not significant. However, the overall model had limited explanatory power. Nonparametric regression with smoothing functions effectively modeled the relationship between 'BE4DBE2' and variables 'n' and 'z,' explaining approximately 11% of the variability in the response variable. Classification using Naive Bayes successfully categorized nuclear data based on 'n' and 'z,' revealing their relationship. Decision tree analysis evaluated the performance of this classification model and provided insights into accuracy, agreement, sensitivity, specificity, precision, and negative predictive value. SVM analysis successfully built an accurate SVM model with a linear kernel, classifying nuclear data while depicting decision boundaries and support vectors. K-means clustering grouped nuclear data based on 'n' and 'z,' revealing distinct characteristics and enabling the identification of similar clusters. The Bayesian regression model predicted binding energy using 'n' and 'z' as independent variables, capturing the Gaussian distribution of 'BE4DBE2' and providing statistical measures for parameter estimation. Ccomprehensives nuclear data analysis using various statistical approaches provides valuable insights into relationships, predictions, classification, and clustering, contributing to the advancement of nuclear science and facilitating further research in this field.
Pemahaman Guru IPA Terhadap Pengajaran Responsif Budaya pada Kurikulum Merdeka Belajar Abubakar; Yul Ifda Tanjung; Ridwan Abdullah Sani; Budiman Nasution; Yohandri; Festiyed
Jurnal Penelitian Pendidikan IPA Vol 10 No 1 (2024): January
Publisher : Postgraduate, University of Mataram

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.29303/jppipa.v10i1.4821

Abstract

This research aims to describe teachers' understanding of Culturally Responsive Teaching (CRT), difficulties to implement it, and its relation to higher order thinking skills through descriptive qualitative method using interview instrument. The research subjects were twenty science teachers from three senior high schools that have implemented Independent Learning Curriculum in Medan City and Deli Serdang Regency in North Sumatera. The results revealed that 70% of teachers have limited understanding and only 30% of the teachers who understand the concept of this learning correctly. The research results also showed that only 20% had ever implemented CRT in their classrooms and 80% had never implemented. This is all due to difficulties. Based on previous research, it shows that CRT make many positive contributions to learning processes and outcomes, improving the learning process and outcomes, improving higher order thinking skills and building student’s character. Therefore, teachers need to understand, be able to design and implement learning model based on CRT to serve diverse students.
Analisis Parameter Orbit Bintang di Dekat Lubang Hitam SgrA* dan Implikasinya dalam Astronomi Dolfie Paulus Pandara; Budiman Nasution; Lulut Alfaris; Aldi Cahya Muhammad; Arip Nurahman; Ruben Cornelius Siagian
Wahana Fisika Vol 8, No 2 (2023): December
Publisher : Universitas Pendidikan Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.17509/wafi.v8i2.64244

Abstract

Penelitian ini menjelaskan parameter-parameter orbit bintang yang mengelilingi lubang hitam di galaksi SgrA*. Data dari penelitian sebelumnya digunakan untuk menghitung rata-rata dan akurasi pengukuran parameter-parameter seperti jarak, eksentrisitas, kemiringan orbit, dan periode orbit. Selain itu, parameter orbit bintang lainnya juga dicatat, yang memberikan wawasan lebih lanjut tentang dinamika galaksi SgrA*. Hasil perhitungan teoretis menunjukkan variasi yang signifikan dalam parameter-parameter ini, mengenrich pemahaman kita tentang bintang-bintang yang berinteraksi dengan lubang hitam. Penemuan ini memberikan kontribusi berharga dalam ilmu astronomi dan fisika bintang, mengisi celah penelitian sebelumnya, dan membuka pintu untuk penelitian lebih lanjut. Kesimpulannya, penelitian ini menggambarkan keragaman dalam sifat fisik dan dinamika bintang-bintang yang mengorbit lubang hitam, mendalamkan pemahaman kita tentang fenomena di sekitar lubang hitam.
Klasifikasi Tanaman Hias Menggunakan Algoritma Convolutional Neural Network Jeremia SP Sibarani; Sadion Tumpal Damanik; Rezeki Nurkhalizah; Sri Mulyana; Budiman Nasution
Journal of Information Technology Ampera Vol. 4 No. 3 (2023): Journal of Information Technology Ampera
Publisher : APTIKOM SUMSEL

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.51519/journalita.v4i3.431

Abstract

anaman hias merupakan jenis tanaman yang dikenal karena keindahan dan daya tarik estetikanya. Terdapat berbagai jenis tanaman hias yang mudah ditemukan, namun, mengidentifikasi dan mengklasifikasikan tanaman hias seringkali sulit bagi kita, khususnya bagi pemula yang ingin terlibat dalam dunia bisnis tanaman hias. Untuk memudahkan pengenalan jenis-jenis tanaman hias, penelitian ini akan menggunakan algoritma Convolutional Neural Network (CNN) sebagai solusi. CNN telah terbukti efektif dalam pengolahan citra dan pengenalan objek, menjadikannya pilihan algoritma yang cocok untuk klasifikasi tanaman hias. Penelitian ini menggunakan 112 gambar Mawar Damask, 100 gambar Bunga Echeveria, 100 gambar Mirabilis Jalapa, 110 gambar Lily Hujan, dan 47 gambar Zinnia Elegans. Dalam proses pra-pengolahan, noise dihilangkan, kemudian dilakukan augmentasi gambar, membagi data menjadi dua, yaitu data latih dan data uji, lalu melatih model dan mengevaluasi model serta mendapatkan hasil akurasi. Hasil klasifikasi berhasil mencapai tingkat akurasi yang tinggi untuk beberapa label, tetapi ada label tertentu yang tidak dapat diidentifikasi. Skor F1 tertinggi ditemukan pada label "Mawar Damask" dengan nilai 1.00, sementara label "Mirabilis Jalapa" dan "Lily Hujan" memiliki nilai Presisi tertinggi yaitu 1.00. Namun, dalam pengukuran evaluasi, label "Zinnia Elegans" tidak menghasilkan nilai yang terukur sama sekali.
EXPLORING THE INTERCONNECTEDNESS OF COSMOLOGICAL PARAMETERS AND OBSERVATIONS: INSIGHTS INTO THE PROPERTIES AND EVOLUTION OF THE UNIVERSE Nasution, Budiman; Siagian, Ruben Cornelius; Nurahman, Arip; Alfaris, Lulut
Spektra: Jurnal Fisika dan Aplikasinya Vol. 8 No. 1 (2023): SPEKTRA: Jurnal Fisika dan Aplikasinya, Volume 8 Issue 1, April 2023
Publisher : Program Studi Fisika Universitas Negeri Jakarta

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.21009/SPEKTRA.081.03

Abstract

This research aims to investigate the relationship between Confidence Interval, Hubble Parameter, Comoving Distance, and Distance-Volume Relationship, which are important equations in cosmology. The Confidence Interval equation is used to estimate the range of values for the difference between the mean redshift and Hubble parameter. The Hubble Parameter equation is used to measure the expansion rate of the universe, while the Comoving Distance equation is used to calculate the distance between two objects in the expanding universe, and the Distance-Volume Relationship equation is used to calculate the distance between an observer and a cosmic object based on the object's redshift. This study seeks to address several research questions, including the accuracy of estimating parameters using these equations and the potential for developing more precise equations. The study employs cosmological data analysis using the R program to analyze existing data and gain a better understanding of cosmological parameters. The results of this research contribute to our understanding of the nature and evolution of the universe, providing insights into the distribution of matter and the role of dark matter and dark energy in shaping the universe's evolution. By examining the relationship between cosmological parameters, this study enables us to make predictions about cosmic phenomena and improve the accuracy of future measurements. The findings of this research have implications for cosmological research and can aid in the development of more accurate models and theories in the field of cosmology. Overall, this study provides valuable insights into the fundamental equations in cosmology and their relationships, advancing our understanding of the universe's dynamics and evolution.
ANALISIS PENGARUH MASSA PADA STRUKTUR BANGUNAN BERTINGKAT PADA SAAT GEMPA BUMI MENGGUNAKAN METODE ELEMEN HINGGA Nasution, Budiman
EINSTEIN (e-Journal) Vol 9, No 1 (2021): EINSTEIN (e-Journal)
Publisher : Universitas Negeri Medan

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (862.447 KB) | DOI: 10.24114/eins.v9i1.23557

Abstract

Beban lateral dinamis yang disebabkan oleh gempa bumi dapat mempengaruhi struktur bangunan yang berada di daerah sekitar pusat gempa. Sangat banyak kasus gempa bumi yang menyebabkan kerusakan pada struktur bangunan. Untuk ketahanan gempa perlu dilihat bagaimana pengaruh massa terhadap respon struktur bangunan pada saat terjadi gempa. Berbagai pendekatan telah banyak dilakukan untuk melihat respon struktur bangunan. Salah satu pendekatan yang diakukan dengan menggunakan metode elemen hingga (MEH). Pada penelitian ini akan dilihat bagaimana pengaruh massa terhadap struktur bangunan bertingkat pada saat terjadi gempa bumi. Dengan menerapkan metode elemen hingga dan pendekatan getaran mekanis sehingga dapat dilihat pola goyangan, perpindahan dan gaya geser dari struktur bangunan.
Heat Conduction in Cylindrical Coordinates with Time-Varying Conduction Coefficients: A Practical Engineering Approach Alfaris, Lulut; Siagian, Ruben Cornelius; Muhammad, Aldi Cahya; Nasution, Budiman
Journal of Mechanical Engineering Science and Technology (JMEST) Vol 7, No 2 (2023)
Publisher : Universitas Negeri Malang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.17977/um016v7i22023p157

Abstract

This research aims to develop a mathematical method for expressing the Laplace operator in cylindrical coordinates and applying it to solve heat conduction equations in various scenarios. The method commences by transforming Cartesian coordinates into cylindrical coordinates and identifying the necessary substitutions. The result is the expression of the Laplace operator in cylindrical coordinates, which is subsequently employed to address heat conduction equations within cylindrical coordinates. Various cases encompassing different initial and boundary conditions, as well as variations in the conduction coefficient over time, are meticulously considered. In each instance, precise mathematical solutions are determined and subjected to thorough analysis. This study carries substantial implications for comprehending heat transfer within cylindrical coordinate systems and finds relevance in a wide array of scientific and engineering contexts. The research's findings can be harnessed for technology development, heating system design, and heat transfer modeling across diverse applications, including mechanical engineering and materials science. Therefore, the research's contribution holds paramount significance in advancing our understanding of heat transfer within cylindrical coordinates and in devising more efficient and accurate solutions for an array of heat-related issues within the realms of science and engineering.