Claim Missing Document
Check
Articles

Kinerja dan Kinetika Produksi Biohidrogen secara Batch dari Sampah Buah Melon dalam Reaktor Tangki Berpengaduk Febrina Sarlinda; Sarto Sarto; Muslikhin Hidayat
Jurnal Rekayasa Proses Vol 12, No 1 (2018)
Publisher : Departemen Teknik Kimia Fakultas Teknik Universitas Gadjah Mada

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.22146/jrekpros.33611

Abstract

Melon fruit waste with high sugar and water content is potential as a substrate for hydrogen production by dark fermentation. This study investigated the performance of biohydrogen production from melon fruit waste in a stirred tank reactor with initial concentration of 13100 mg sCOD/L, in room temperature, initial pH of 7 and controlling final pH at 5.5 by adding NaOH. The fermentation was carried out for 24 hours. The value of pH, volatile solid (VS), soluble chemical oxygen demand (sCOD), volatile fatty acid (VFA), biogas volume, hydrogen content, and cell concentration was analized every hour to determine the performance of reactor. Hydrogen content reached 16.20% with hydrogen production rate (HPR) of 458.12 mL/Lreactor/day in the standard temperature and pressure (STP) condition. Substrate consumption at the end of fermentation reached 24.61% of sCOD and 78.28% of VS. Metabolite products were dominated by acetate and butyrate with butyrate to acetate ratio of 7:6.  The kinetic of product formation was evaluated by the kinetic model of Gompertz. Meanwhile the kinetics of cell growth was approximated by logistics model  A B S T R A KSampah buah melon yang cukup melimpah dan kaya akan gula dan air sangat berpotensi sebagai substrat untuk produksi biohidrogen secara fermentasi gelap. Pada penelitian ini dipelajari kinerja produksi biohidrogen dari sampah buah melon menggunakan reaktor tangki berpengaduk. Konsentrasi awal substrat 13.100 mg sCOD/L pada suhu ruang, pH awal 7 dan dan dilakukan kontrol terhadap pH akhir fermentasi agar tidak turun lebih rendah dari pH 5,5 dengan penambahan NaOH. Fermentasi berlangsung selama 24 jam dan setiap jam dilakukan analisis terhadap pH, volatile solid (VS), soluble chemical oxygen demand (sCOD), volatile fatty acid (VFA), volume biogas, kadar hidrogen dan konsentrasi biomassa untuk mengetahui kinerja reaktor. Kadar biohidrogan yang diperoleh sebesar 16,20% dengan laju produksi hidrogen sebesar 458,12 mL/Lreaktor/hari pada keadaan STP. Konsumsi substrat pada akhir fermentasi mencapai 24,61% sCOD dan 78,28% VS. Produk metabolit dominan adalah asetat dan butirat dengan ratio butirat per asetat sebesar 1,2.  Kinetika pembentukan hidrogen dipelajari melalui model kinetika persamaan Gompertz. Sedangkan kinetika pertumbuhan sel didekati dengan model kinetika persamaan logistik.                                                                                               
Integrasi Proses Elektrokoagulasi-Elektrooksidasi sebagai Alternatif dalam Pengolahan Limbah Cair Batik Zat Warna Naftol Fikry Nashrullah K; Muslikhin Hidayat; Moh. Fahrurrozi
Jurnal Rekayasa Proses Vol 10, No 1 (2016)
Publisher : Departemen Teknik Kimia Fakultas Teknik Universitas Gadjah Mada

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.22146/jrekpros.34425

Abstract

The production of batik produces wastewater which contains mixture of complex organic macromolecules. In this study, a sequential process of electrocoagulation-electrooxidation (EC-EO) using electrodes of aluminium-graphite and PbO2-graphite was proposed as an alternative method for treating wastewater of naphthol from batik dyeing process. The effects of parameter of current density of in the range of 3.7-7.90 mA/cm2, and the effect of electrical voltage to the decrease of color intensity. The electrocoagulation-electrooxidation method was carried out in a batch reactor with a capacity of 1.3 L, where the first 20 minutes is the electrocoagulation process and the next 100 minutes is the electrooxidation process. The samples were drawn at 10, 20, 40, 60, 80, 100 and 120 minutes and their color intensity was analyzed using spectrophotometric method. The results showed that the highest decreased value was at 99,78% at the current density (7,53 mA/cm2) during 120 minutes with electricity consumption 14,40 kWh/m3. The higher the density of the current, the greater the decrease value of color intensity in the liquid naphthol waste.  ABSTRAKProduksi kain batik menghasilkan air limbah yang mengandung campuran makromolekul organik kompleks dengan warna pekat. Dalam penelitian ini, proses elektrokoagulasi-elektrooksidasi (EC-EO) berurutan menggunakan elektroda aluminium-grafit dan PbO2-grafit, diusulkan sebagai metode alternatif untuk mengolah limbah cair zat warna naftol hasil proses pewarnaan kain batik. Efek dari parameter berupa kerapatan arus (3,77, 5,65, 7,53 dan 7,90 mA/cm2) terhadap penurunan intensitas warna dipelajari dalam penelitian ini. Metode kombinasi ini dilakukan dalam satu reaktor batch dengan kapasitas 1,3 L, dimana 20 menit awal adalah proses elektrokoagulasi dan 100 menit berikutnya adalah proses elektrooksidasi. Pengambilan sampel dilakukan pada menit ke-10, 20, 40, 60, 80, 100 dan 120. Uji intensitas warna dilakukan dengan metode spektrofotometri UV/VIS. Hasil penelitian menunjukan bahwa penurunan intensitas warna tertinggi (99,78%) dapat diperoleh pada densitas arus 7,53 mA/cm2 selama 120 menit dengan konsumsi energi listrik 14,40 kWh/m3. Semakin tinggi densitas arus yang diberikan, maka semakin besar pula nilai penurunan intensitas warna dari limbah cair zat warna naftol.
Karakteristik Bio-Briket Berbahan Baku Batu Bara dan Batang/Ampas Tebu terhadap Kualitas dan Laju Pembakaran Nurhalim Nurhalim; Rochim Bakti Cahyono; Muslikhin Hidayat
Jurnal Rekayasa Proses Vol 12, No 1 (2018)
Publisher : Departemen Teknik Kimia Fakultas Teknik Universitas Gadjah Mada

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.22146/jrekpros.35278

Abstract

Indonesia has a very large fossil fuel source such as coal. In Indonesia, almost all power plants and industries use coal as solid fuel. Burning coal produces fly ash, bottom ash, poisonous gas and unused coal residue. The coal waste is commonly found in mining operations, abandoned mining areas, laboratories and power plants. This problem could be solved by producing bio-briquette using the coal waste. In this study, laboratory scale pyrolysis and non pyrolysis methods were used to produce bio-briquette using the coal waste with measurement of proximate analysis and burning rate. Pyrolysis was carried out at constant temperature of 400 oC for 2 hours. The total weight of briquette sample as much as 99.87 g was burnt at 400 oC with sufficient air space in the furnace. The waste coal was mixed with biomass bagasse and sugar cane stems before the briquetting process. The composition of the briquette material was 50 g of coal waste, 30 g of sugar cane biomass, and 10 g of bagasse. To form the briquette, tapioca was used as adhesive in addition to 5 g of clay with 50 mesh of size and application of 50 kg/cm2 pressure. The result of proximate analysis and combustion of the non-pyrolysis bio-briquette showed that non-pyrolysis bio-briquette contained 4.17 % of moisture content, 18.39% of fly ash, 25.56% of ash content, 5157.87 cal/g of calorific value. The mass of of pyrolysis bio-briquette (50 g) decreased to 30 g during 30 minutes, the compulsion reached maximum speed on 1.93 g/s and the smoke disappeared on the 24th minute The pyrolysis process on coal waste decreased the smoke and the addition of biomass increased the calorific value of bio-coal briquette.ABSTRAKIndonesia memiliki sumber energi fosil yang sangat besar seperti batu bara. Hampir seluruh pembangkit listrik dan industri di Indonesia menggunakan bahan baku batu bara. Batu bara memiliki limbah berupa flying ash, bottom ash, gas beracun dan sisa batu bara yang tidak terpakai. Limbah batu bara tidak terpakai banyak terdapat di pertambangan yang masih beroperasi, sisa lahan pertambangan, laboratorium, pembangkit listrik, sehingga perlu penanganan yang tepat seperti pembuatan briket bio-batu bara. Pada pembuatan briket bio-batu bara ini, batu bara diproses menggunakan metode pirolisis dan tanpa pirolisis dengan uji skala laboratorium seperti uji proksimat dan laju pembakaran. Proses pirolisis menggunakan suhu 400 oC selama 2 jam dan karbonisasi biomassa tanpa menggunakan parameter suhu dan waktu. Berat sampel briket sebesar 99,87 g dibakar pada suhu pembakaran 400 oC dengan menggunakan udara ruang didalam furnace. Sebelum proses pembriketan, batu bara yang telah mengalami proses pirolisis dan tanpa pirolisis dicampur dengan limbah biomassa ampas dan batang tebu. Variabel penelitian menggunakan 50 g limbah batu bara, 30 g biomassa batang tebu dan 10 g ampas tebu. Briket bio-batu bara menggunakan perekat tepung kanji dan tanah liat dengan berat masing–masing 5 g. Sedangkan untuk tingkat kelembutan setiap bahan briket adalah 50 mesh dengan kuat tekan 50 kg/cm2. Hasil analisis proksimat briket bio-batu bara PP (50 g) mengandung kadar air sebesar 4,17%, zat terbang 18,39%, kadar abu 25,56%, nilai kalori sebesar 5157,87 kal/g. Briket bio-batu bara PP (50 g) mengalami penurunan massa sebanyak 30 g selama 30 menit, laju pembakaran mencapai kecepatan maksimum 1,93 g/s dan asap hilang pada menit ke-24. Batu bara dengan proses pirolisis dapat menurunkan asap dan penambahan biomassa dapat menaikkan nilai kalori briket bio-batu bara.
Pemanfaatan Limbah Kulit Kakao Menjadi Briket Arang sebagai Bahan Bakar Alternatif dengan Penambahan Ampas Buah Merah Syarifhidayahtullah Syarif; Rochim Bakti Cahyono; Muslikhin Hidayat
Jurnal Rekayasa Proses Vol 13, No 1 (2019)
Publisher : Departemen Teknik Kimia Fakultas Teknik Universitas Gadjah Mada

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (480.77 KB) | DOI: 10.22146/jrekpros.41517

Abstract

A B S T R A C TThe conversion of cocoa shell waste into char briquettes has been carried out through various methods. However, the product characteristics do not meet the SNI briquettes requirements. Therefore, it is necessary to improve process engineering by mixing cocoa peel waste with red fruit pulp to get char briquettes in order to improve quality of briquette products. This research was carried out through pyrolysis process with temperthwatures up to 500 oC and held for 4 hours. The research objective was to produce char briquettes from cacao pod shell waste with the addition of red fruit pulp and its characteristic test. The study was designed with 2 variables, namely independent variables in the form of char raw material powder that passed 50 mesh sieve, weight ratio of cocoa shell char powder and red fruit pulp char powder (100:0, 70:30, 50:50, 30:70, and 0%:100%), pressure (100 kg/cm2), 10% starch adhesive from raw materials, and briquette diameter of 40 mm. Whereas the dependent variables are the moisture content (%), volatile content (%), ash content (%), fixed carbon content (%), and calorific value (cal/g). The results showed that the process of pyrolysis of char briquettes waste cocoa shell with red fruit pulp can increase its calorific value. The best characteristics of briquette were obtained from mixed briquettes (composition of 30%:70%) with moisture content of 5.63%, volatile content of 18.65%, ash content of 9.45%, fixed carbon content of 66.27%, and calorific value of 6422 cal/g.A B S T R A KPemanfaatan limbah kulit buah kakao menjadi briket arang telah banyak dilakukan melalui berbagai metode tetapi belum memenuhi persyaratan SNI briket arang. Oleh karena itu, perlu diupayakan untuk mendapatkan briket arang yang memenuhi persyaratan SNI. Salah satunya dengan cara mencampurkan limbah kulit kakao dengan ampas buah merah karena ampas buah merah memiliki nilai kalor yang cukup tinggi. Penelitian ini dilakukan melalui proses pirolisis dengan suhu sampai dengan 500 oC  dan ditahan selama 4 jam. Tujuan penelitian untuk memproduksi briket arang dari limbah kulit buah kakao dengan penambahan ampas buah merah serta uji karakteristiknya. Penelitian dirancang dengan 2 variabel, yaitu variabel bebas (independent variable) berupa ukuran serbuk bahan baku arang yang lolos saringan  50 mesh, rasio massa campuran serbuk arang kulit kakao dengan serbuk arang ampas buah merah (100:0, 70:30, 50:50, 30:70, dan 0%:100%), tekanan pengempaan (100 kg/cm2), perekat kanji 10% dari bahan baku, dan diameter briket 40 mm. Variabel terikat (dependent variable) yang diukur yaitu kadar air (%), kadar zat mudah menguap (%), kadar abu (%), kadar karbon terikat (%), dan nilai kalor (kal/g). Hasil penelitian menunjukkan bahwa, dengan melalui proses pirolisis briket arang limbah kulit kakao dengan ampas buah merah dapat meningkatkan nilai kalor-nya. Karakteristik briket terbaik diperoleh dari briket komposisi campuran (30%:70%) dengan kadar air 5,63 %, kadar zat mudah menguap 18,65 %, kadar abu 9,45 %, kadar karbon terikat 66,27 %, dan nilai kalor 6422 kal/g.
Studi Penambahan Etilena Glikol dalam Menghambat Pembentukan Metana Hidrat pada Proses Pemurnian Gas Alam Muslikhin Hidayat; Danang Tri Hartanto; Muhammad Mufti Azis; Sutijan Sutijan
Jurnal Rekayasa Proses Vol 14, No 2 (2020)
Publisher : Departemen Teknik Kimia Fakultas Teknik Universitas Gadjah Mada

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.22146/jrekpros.59871

Abstract

The gas processing facilities are designed to significantly reduce the impurities such as water vapor, heavy hydrocarbon, carbon dioxide, carbonyl sulfide (COS), benzene-toluene-xylene (BTX), mercaptane, and the sulfur compounds. A small amount of those compounds in natural gas is not preferable since they disturb the next processes.  It was proposed to decrease natural gas's operating temperature to -20 ⁰F to remove the impurities from natural gas. The decrease of the natural gas's operating temperature has some consequences to the gas mixers such as hydrate formation at high pressure and low temperature, solidification of ethylene glycol (EG) solution, and the icing of the surface due to low temperature on the surface of chiller (three constraints). The Aspen Hysys 8.8 was used to obtain the suitable flowrate and concentration of the EG solution injected into the natural gas. Peng-Robinson's model was considered the most appropriate thermodynamic property model, and thus it has been applied for this research. The calculation results showed that the EG solution injection would reduce the hydrate formation due to water vapor absorption in the natural gas by EG. The EG solution's flowrate and concentration were varied from 20,000-2,000,000 lb/hr and 80-90 wt.%. When the separation was carried out at the operating temperature of -20 ⁰F, the EG solution's concentration fulfilling the requirement was of 80-84 wt.% with the flowrate of EG solution of 900,000 lb/hr and even more. This amount is not operable. More focused investigation was done for the variation of the operating temperature. Increasing operating temperature significantly reduced the flowrate of EG solution to about 200,000 lb/hr. An alternative process was proposed by focusing on two concentration cases of 80 and 85 % of weight at the low flow rate of EG solution, respectively. These simulations were intended to predict impurities' concentration in the effluent of Dew Point Control Unit (DPCU). The concentrations of BTX, heavy hydrocarbon, mercaptane, and COS flowing out of DPCU were 428.1 ppm, 378.4 ppm, 104 ppm, and 13.3 ppm, respectively. The concentrations of BTX and heavy hydrocarbon are greater than the minimum standard required. It is needed to install an absorber to absorb BTX and heavy hydrocarbon. However, the absorber capacity will be much smaller than if the temperature of natural gas is not decreased and not injected by the EG solution.Keywords: DPCU gas treatment; ethylene glycol solution; hydrate formation; simulationA B S T R A KUnit pengolahan gas dirancang untuk mengurangi sebagian besar senyawa pengotor seperti uap air, hidrokarbon berat, karbon dioksida, karbonil sulfida (COS), benzena-toluena-xilena (BTX), merkaptan, dan senyawa sulfur lainnya. Keberadaan senyawa tersebut dalam gas alam berbahaya karena mengganggu proses selanjutnya walaupun dalam jumlah sedikit. Untuk membersihkan gas alam dari senyawa pengotor, maka suhu operasi gas diturunkan menjadi -20 °F. Penurunan suhu operasi gas dapat menyebabkan pembentukan hidrat pada tekanan tinggi dan suhu rendah, pembekuan larutan etilena glikol (EG), dan pembentukan lapisan es pada permukaan chiller. Aspen Hysys 8.8 digunakan untuk memperkirakan berapa kecepatan alir dan konsentrasi larutan EG yang diinjeksikan ke gas alam. Model Peng-Robinson adalah model termodinamika yang diterapkan untuk penelitian ini. Hasil simulasi menunjukkan bahwa injeksi larutan EG dapat mengurangi pembentukan hidrat karena larutan EG menyerap uap air dalam gas alam. Kecepatan alir dan konsentrasi larutan EG divariasikan dari 20.000-2.000.000 lb/jam dan 80-90 % (%b/b). Saat pemisahan dilakukan pada suhu operasi -20 °F, konsentrasi larutan EG yang memenuhi syarat adalah 80-84 % (%b/b) dengan kecepatan alir larutan EG 900.000 lb/jam atau lebih. Jumlah ini sangat banyak dan kurang layak untuk dioperasikan. Penelitian difokuskan pada variasi suhu operasi. Peningkatan suhu operasi diikuti dengan pengurangan kecepatan aliran larutan EG secara signifikan yaitu menjadi sekitar 200.000 lb/jam. Alternatif proses diusulkan dengan berfokus pada penggunaan kecepatan alir larutan EG yang rendah dengan konsentrasi larutan EG sebesar 80 dan 85 % (%b/b). Simulasi dapat memprediksi konsentrasi pengotor yang keluar dari Dew Point Control Unit (DPCU). Konsentrasi BTX, hidrokarbon berat, merkaptan, dan COS yang mengalir keluar dari DPCU berturut-turut adalah 428,1 ppm, 378,4 ppm, 104 ppm, dan 13,3 ppm. Konsentrasi BTX dan hidrokarbon berat tersebut lebih besar dari standar minimum yang disyaratkan. Oleh karena itu, diperlukan pemasangan absorber untuk menyerap BTX dan hidrokarbon berat. Namun, kapasitas absorber akan jauh lebih kecil apabila dibandingkan dengan kondisi tanpa menurunkan suhu dan menginjeksikan oleh larutan EG.Kata kunci: DPCU; larutan etilena glikol; pembentukan hidrat; simulasi 
PENILAIAN DAUR HIDUP PRODUKSI GAS BUMI DAN KONDENSAT DI LAPANGAN SOUTH PROCESSING UNIT (SPU) – SWAMP AREA Doni Agus Sumitro; Arif Kusumawanto; Muslikhin Hidayat
Envirotek : Jurnal Ilmiah Teknik Lingkungan Vol 12 No 2 (2020): Envirotek : Jurnal Ilmiah Teknik Lingkungan
Publisher : Program Studi Teknik Lingkungan, Universitas Pembangunan Nasional Veteran Jawa Timur

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (318.694 KB) | DOI: 10.33005/envirotek.v12i2.86

Abstract

ABSTRACT South Processing Unit (SPU) is a gas field that produces condensate and natural gas. The process of producing condensate and natural gas might have an impact to the environment. Life Cycle Assessment (LCA) is a method which measure the environmental impact related to a product of natural gas and condensate processing. This method can be used to evaluate and analyze environmental impacts. This study aims to find out which process units that have a major impact to global warming and human toxicity then provide recommendations for improvements in order to reduce environmental impacts. LCA method and Software SimaPro version developer 9.0 are used during this study. Based on the results, shown the environmental impacts occurred in the process unit for processing gas and condensate product in SPU field. The process units are LP Compressors, Turbo Electric Generator, SCP Flare, SMP Flare, and Sodium Hydroxide Injection. The LP compressors are the biggest contributor for global warming and human toxicity with the impact of 2.855,236 kg CO2 and 8,884 kg 1.4-DB eq. The recommendations to reduce environmental impacts are using biomass as an alternative fuel, adsorption of CO2 with a zeolite adsorbent, and planting of CO2 absorbing plants. Keywords: LCA, South Processing Unit (SPU), SimaPro
PENGARUH HYDRAULIC RETENTION TIME PADA PRODUKSI BIOHIDROGEN DARI SAMPAH BUAH MELON (Cucumis melo L.) MENGGUNAKAN REAKTOR ALIR PIPA SECARA KONTINYU Nurkholis Nurkholis; Sarto Sarto; Muslikhin Hidayat
Jurnal Inovasi Teknik Kimia Vol 1, No 2 (2016)
Publisher : Fakultas Teknik Universitas Wahid Hasyim

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.31942/inteka.v1i2.1652

Abstract

Penelitian ini bertujuan untuk mengevaluasi pengaruh hydraulic retention time (HRT) terhadap laju produksi dan yield bio-H2 dari sampah buah melon secara kontinyu menggunakan reaktor alir pipa, termasuk juga produksi asam-asam organik sebagai hasil samping (by-product.. Penelitian dilakukan dalam 2 tahap, yaitu pra-perlakuan dan pengkayaan inokulum campuran sludge dari biodigester sampah buah, tahu dan kotoran sapi dengan menggunakan HCl 37% 2M (acid treatment) dan tahap proses produksi H2. Proses produksi H2 dilakukan secara fermentasi gelap, dengan terlebih dahulu dilakukan aklimatisasi (start-up) mikroorganisme yang terlibat dalam proses fermentasi gelap. Proses pengumpanan substrat selanjutnya dilakukan dengan variasi HRT 7 hari, 5 hari dan 3 hari secara bertahap dalam waktu 21 hari. Sampel gas dan cairan diambil dari reaktor untuk dilakukan analisis kadar H2, volatile solid (VS) dan volatile fatty acid (VFA). Dari hasil penelitian dapat disimpulkan bahwa, laju produksi dan yield bio-H2 optimal pada HRT yang singkat yaitu 3 hari, dimana secara berturut-turut mencapai  224,8587 mL dan 50,4097 mL/ g VS, sedangkan konsentrasi VFA tertinggi mencapai 47.000 mg/ L pada HRT 7 hari, dimana asam asetat merupakan konstituten domian. Hal ini dapat menyebabkan inhibisi yang dapat menurunkan produksi gas. Kata kunci: bio-H2, sampah buah melon, hydraulic retention time (HRT).
Reaction Kinetics of Levulinic Acid Synthesis from Glucose Using Bronsted Acid Catalyst Meutia Ermina Toif; Muslikhin Hidayat; Rochmadi Rochmadi; Arief Budiman
Bulletin of Chemical Reaction Engineering & Catalysis 2021: BCREC Volume 16 Issue 4 Year 2021 (December 2021)
Publisher : Masyarakat Katalis Indonesia - Indonesian Catalyst Society (MKICS)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.9767/bcrec.16.4.12197.904-915

Abstract

Glucose is one of the primary derivative products from lignocellulosic biomass, which is abundantly available. Glucose has excellent potential to be converted into valuable compounds such as ethanol, sorbitol, gluconic acid, and levulinic acid (LA). Levulinic acid is an exceptionally promising green platform chemical. It comprises two functional groups, ketone and carboxylate, acting as highly reactive electrophiles for a nucleophilic attack. Therefore, it has extensive applications, including fuel additives, raw materials for the pharmaceutical industry, and cosmetics. This study reports the reaction kinetics of LA synthesis from glucose catalyzed by hydrochloric acid (HCl), a Bronsted acid, that was carried out under a wide range of operating conditions; i.e. the temperature of 140–180 °C, catalyst concentration of 0.5–1.5 M, and initial glucose concentration of 0.1–0.5 M. The highest LA yield of 48.34 % was able to be obtained from an initial glucose concentration of 0.1 M and by using 1 M HCl at 180 °C. The experimental results show that the Bronsted acid-catalyzed reaction pathway consists of glucose decomposition to levoglucosan (LG), conversion of LG to 5-hydroxymethylfurfural (HMF), and rehydration of HMF to LA. The experimental data yields a good fitting by assuming a first-order reaction model. Copyright © 2021 by Authors, Published by BCREC Group. This is an open access article under the CC BY-SA License (https://creativecommons.org/licenses/by-sa/4.0). 
Pemodelan Dekomposisi Ammonium Carbamate pada Tekanan Tinggi di Pabrik Urea Sunarya, Rahmat; Sediawan, Wahyudi Budi; Hidayat, Muslikhin
Prosiding Seminar Nasional Teknik Kimia "Kejuangan" 2023: PROSIDING SNTKK 2023
Publisher : Seminar Nasional Teknik Kimia "Kejuangan"

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

Urea acts as a nitrogen-based fertilizer to boost crop production and prevent a worldwide hunger crisis. Considering ways to make urea production in existing plants more environmentally friendly, a detailed study has been conducted on the high-pressure stripper, in which the equipment uses intensive energy to decompose ammonium carbamate. The mathematical model was prepared using the two-film theory. The UNIQUAC and Redlich-Kwong equations of state have been used to express nonideality in the NH3-CO2-H2O-urea system under high pressure and temperature circumstances. Due to the lack of transport properties in extreme conditions, the properties were estimated using a theoretical method. The present study obtained the mass-transfer coefficient in dimensionless form  and . Moreover, the heat-transfer coefficient was calculated using the Chilton-Colburn analogy. The proposed model result matches what is expected with the commercial plant data. Furthermore, with less than 5% relative deviations, the model deserves significant consideration for any practical use in high-pressure stripper simulation
Potensi Selulosa Bakteri Sebagai Pembalut Luka Ideal dan Penghantar Obat (Drug Delivery) Liau, Selva Susilowati; Hidayat, Muslikhin; Sulistyo, Hary
Prosiding Seminar Nasional Teknik Kimia "Kejuangan" 2023: PROSIDING SNTKK 2023
Publisher : Seminar Nasional Teknik Kimia "Kejuangan"

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

The wound healing process requires an environment that can maintain moisture, absorb excess exudate, and is biodegradable. Conventional wound dressings such as cotton, gauze, and bandages cause wound dehydration. Bacterial cellulose derived from the fermentation of coconut water by Acetobacter xylinum bacteria has unique characteristics that have the potential to be an ideal wound dressing because it can provide a moist environment. It also has good mechanical properties, biodegradability, high biocompatibility, and is non-toxic. Bacterial cellulose produces fine fibres forming a thin layer of extracellular polysaccharides. Such fibre makes it possible to bind to the molecules of the drug. This research will study the mechanical properties and efficiency of drug mass transfer from bacterial cellulose membranes with different carbon sources, namely glucose and fructose, with fermentation time variations of 3, 5, and 7 days. The results showed that the characteristic value of the fructose carbon source was superior to that of glucose. The glucose carbon source has a membrane thickness of 0.81; 6,93; 10.61 mm; fructose is 2.80; 8,41; 13.40 mm. The highest absorption capacity, stress, elongation and drug mass efficiency value is obtained by a fructose carbon source with a fermentation time of 7 days, and for absorption capacity obtained at 1.1640 g/g, stress value 105.9 N with elongation 19.90 mm and drug mass efficiency 4.085%