Claim Missing Document
Check
Articles

KINETIKA REAKSI HIDROLISIS Megawati Megawati; Wahyudi Budi Sediawan; Hary Sulistyo; Muslikhin Hidayat
Reaktor Volume 12, Nomor 4, Desember 2009
Publisher : Dept. of Chemical Engineering, Diponegoro University

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (245.641 KB) | DOI: 10.14710/reaktor.12.4.211 – 217

Abstract

Bio-etanol merupakan salah satu bahan bakar organik yang dapat diproduksi dari pati dan selulosa. Bahan berbasis selulosa dapat ditemukan dalam limbah organik, diantaranya: grajen kayu, ranting kering, daun kering, tongkol jagung, sekam padi dan lain-lain. Langkah-langkah penting pada produksi etanol dari lignoselulosa ialah hidrolisis untuk mengkonversi hemiselulosa dan selulosa menjadi gula, fermentasi gula untuk memproduksi etanol, dan pemurnian etanol. Penelitian ini mempelajari reaksi hidrolisis ranting kering dengan asam encer pada kondisi non-isotermis. Dua ratus gram ranting kering dicampur dengan 1200 cm3 larutan asam sulfat 0,18 N dan dipanaskan di dalam autoklaf. Selama proses hidrolisis ini, suhu akan terus naik (non-isotermis), kemudian setelah mencapai suhu tertentu dijaga tetap (suhu akhir). Hasil hidrolisis pertama diambil pada suhu 413 K dan seterusnya diambil setiap interval 5 menit. Suhu akhir divariasi pada 433 K, 453 K, 473 K dan 493 K. Metode Fehling dipilih untuk menganalisis kandungan gula di dalam sampel. Persamaan kinetika reaksi diperoleh dengan mengolah data dengan pendekatan model shrinking-core dengan ukuran partikel tetap. Nilai tetapan kecepatan reaksi meningkat sedangkan nilai tetapan transfer massa relatif tidak berubah pada berbagai suhu. Tetapan kecepatan reaksi dapat didekati dengan persamaan Arrhenius, dengan frekuensi tumbukan Ar = 0,083 l/(mol.menit) dan energi aktivasi Er = 20.000 J/mol. Untuk menyelidiki langkah mana yang mengontrol laju proses, dibandingkan tetapan kecepatan reaksi dan tetapan transfer massa pada 493 K, diperoleh nilai tetapan transfer massa berkisar 0,06 l/(mol.menit), dan nilai tetapan kecepatan reaksi berkisar 0,00051 l/(mol.menit), sehingga diperoleh bilangan Hatta 0,00933. Karena bilangan Hatta < 0,02 maka dapat disimpulkan bahwa reaksi kimia lebih mengontrol daripada transfer massa.
KINETIKA PENJERAPAN SIMULTAN KROMIUM(III) DAN NATRIUM MENGGUNAKAN AMBERLITE IR-120 H (TINJAUAN PENGARUH SUHU) Iqbal Haitami; Panut Mulyono; Muslikhin Hidayat
Konversi Vol 7, No 2 (2018): Oktober 2018
Publisher : Universitas Lambung Mangkurat

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.20527/k.v7i2.6493

Abstract

Abstrak - Limbah cair yang mengandung Cr(III) dan Na secara bersamaan sering dijumpai pada hasil kegiatan industri, terutama industri penyamakan kulit. Cr(III) yang merupakan logam berbahaya harus dapat dihilangkan dari limbah cair tersebut. Salah satu metode yang efektif digunakan untuk menangani pencemaran Cr(III) dalam limbah cair adalah pertukaran ion menggunakan resin penukar ion. Prinsip metode ini, yaitu menukarkan ion yang tersedia pada resin penukar ion dengan ion-ion yang berada di sekitarnya. Kehadiran Na dalam larutan tempat dijerapnya Cr(III) dengan menggunakan Amberlite IR-120 H, membuat fenomena ini tergolong sebagai penjerapan multikomponen. Dalam hal ini, penjerapan Cr(III) dan Na oleh Amberlite IR-120 H terjadi secara bersama-sama (simultan). Penelitian ini bertujuan untuk mempelajari laju penjerapan simultan yang terjadi pada berbagai suhu. Di samping itu, ingin dikembangkan model matematis untuk mendekati kinetika penjerapan simultan yang ada. Hasil penelitian menunjukkan bahwa semakin tinggi suhu, maka akan semakin besar laju penjerapan simultan Cr(III) dan Na. Kecenderungan yang sama ditunjukkan oleh nilai konstanta kinetika yang semakin besar seiring meningkatnya suhu. Model matematis yang disusun berdasarkan persamaan laju reaksi cukup sesuai untuk mendekati kinetika penjerapan simultan ini. Berdasarkan nilai energi aktivasi sebesar 56,735 kJ/mol untuk penjerapan Cr(III) yang terjadi, maka dapat dikatakan bahwa laju reaksi adalah laju yang mengontrol proses.Kata kunci: Kromium(III), penjerapan, kinetika, Amberlite IR-120 H, simultan
STUDI KINETIKA SIKLISASI KARET ALAM DENGAN KATALISATOR ASAM SULFAT Henry Prastanto; Rochmadi Rochmadi; Muslikhin Hidayat
Jurnal Penelitian Karet JPK : Volume 29, Nomor 1, Tahun 2011
Publisher : Pusat Penelitian Karet - PT. Riset Perkebunan Nusantara

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.22302/ppk.jpk.v29i1.112

Abstract

Karet alam siklis (CNR) adalah resin pengeras dan pengkaku karet yang dapat dibuat dari lateks karet alam dengan katalis asam. CNR berpotensi menggantikan High Styrene Resin (HSR) yang merupakan produk turunan minyak bumi sehingga penggunaan CNR akan meningkatkan nilai tambah karet alam. Penelitian siklisasi lateks karet alam dengan katalis asam sulfat ini dilakukan untuk mengetahui kinetika reaksi siklisasi lateks karet alam dan nilai konstanta kecepatan reaksi siklisasi (k). Penelitian dilaksanakan di Laboratorium Teknologi Polimer, Jurusan Teknik Kimia Universitas Gadjah Mada. Lateks karet alam dicampur dengan surfaktan dan asam sulfat. Rasio massa asam sulfat terhadap massa lateks pekat karet alam (60%) adalah 1,1; 1,2; 1,3 dan 1,4, sedangkan suhu operasi yang digunakan adalah 85 dan 950C. Sampel diambil dengan interval waktu 15 menit dengan waktu reaksi sampai 2 jam. Selanjutnya sampel digumpalkan, dicuci, disaring dan dikeringkan. Sampel kemudian dianalisis konsentrasi ikatan rangkapnya yang ditunjukkan dengan bilangan iodnya. Analisis bilangan iodnya dilakukan dengan menggunakan metode larutan Wijs. Hasil penelitian ini menunjukkan, rasio massa asam sulfat terhadap lateks pekat agar dapat menghasilkan CNR adalah minimal 1,2:1. Konstanta kecepatan reaksi protonasi (k1) akan semakin besar dengan kenaikan rasio massa asam sulfat terhadap massa lateks. Nilai k2 dan k4 ternyata juga semakin besar dengan kenaikan rasio sehingga selain sebagai reaktan H+ juga berfungsi sebagai katalis.  How to Cite : Prastanto, H., Rochmadi, R., & Hidayat, M. (2011). Studi kinetika siklisasi karet alam dengan katalisator asam sulfat. Jurnal Penelitian Karet, 29(1), 63-75. Retrieved from http://ejournal.puslitkaret.co.id/index.php/jpk/article/view/112
Reaction Kinetics of Levulinic Acid Synthesis from Glucose Using Bronsted Acid Catalyst Meutia Ermina Toif; Muslikhin Hidayat; Rochmadi Rochmadi; Arief Budiman
Bulletin of Chemical Reaction Engineering & Catalysis 2021: BCREC Volume 16 Issue 4 Year 2021 (December 2021)
Publisher : Department of Chemical Engineering - Diponegoro University

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.9767/bcrec.16.4.12197.904-915

Abstract

Glucose is one of the primary derivative products from lignocellulosic biomass, which is abundantly available. Glucose has excellent potential to be converted into valuable compounds such as ethanol, sorbitol, gluconic acid, and levulinic acid (LA). Levulinic acid is an exceptionally promising green platform chemical. It comprises two functional groups, ketone and carboxylate, acting as highly reactive electrophiles for a nucleophilic attack. Therefore, it has extensive applications, including fuel additives, raw materials for the pharmaceutical industry, and cosmetics. This study reports the reaction kinetics of LA synthesis from glucose catalyzed by hydrochloric acid (HCl), a Bronsted acid, that was carried out under a wide range of operating conditions; i.e. the temperature of 140–180 °C, catalyst concentration of 0.5–1.5 M, and initial glucose concentration of 0.1–0.5 M. The highest LA yield of 48.34 % was able to be obtained from an initial glucose concentration of 0.1 M and by using 1 M HCl at 180 °C. The experimental results show that the Bronsted acid-catalyzed reaction pathway consists of glucose decomposition to levoglucosan (LG), conversion of LG to 5-hydroxymethylfurfural (HMF), and rehydration of HMF to LA. The experimental data yields a good fitting by assuming a first-order reaction model. Copyright © 2021 by Authors, Published by BCREC Group. This is an open access article under the CC BY-SA License (https://creativecommons.org/licenses/by-sa/4.0). 
SIMULASI PENGARUH STEAM-TO-CARBON RATIO DAN TUBE OUTLET TEMPERATURE TERHADAP REAKSI STEAM REFORMING PADA PRIMARY REFORMER DI PABRIK AMONIAK Muhammad Natsir Hakiki; Muslikhin Hidayat; Sutijan Sutijan
ROTOR Vol 10 No 2 (2017)
Publisher : Jurusan Teknik Mesin Fakultas Teknik Universitas Jember

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (555.474 KB) | DOI: 10.19184/rotor.v10i2.6393

Abstract

Steam reforming, the reaction in Ammonia plant between natural gas and H2O becoming H2 and CO/CO2, is occurred in Primary Reformer and being completed in Secondary Reformer. In Primary Reformer, the reaction commonly occurred at 450-800oC and 36 bars. The endothermic reaction occurred in Ni-based catalyst inside the tube. The heat for this reaction came from the heat of reaction of combustion in the furnace (outer-tube). The flow of H2 will increase along with the increasing flow of the feed gas and the heat transferred from outer-tube to inner-tube. In the other side, there will be energy increasing. So there’s a need of optimization. The need of energy influenced by many parameters e.g. Steam-to-Carbon Ratio (S/C) and Tube Outlet Temperature (Tout) of Primary Reformer. Commonly S/C is 3.20 and maximum Tout is 800oC. That’s why; optimization was conducted by energy calculation at various S/C and Tout. Firstly, reaction and heat transfer in inner-tube and outer-tube were modeled, so we can get the data of temperature and gas composition outlet inner-tube. Then, energy consumption which came from process gas, fuel gas and steam generation was calculated. The range of S/C 2.70-3.70 and Tout 700oC-800oC were chosen for the simulation. The simulation result shown that the need of energy per kmol-H2 outlet Primary Reformer at S/C 3.20 and Tout 800oC was 573.11 MJ/kmol-H2. The need of energy per kmol-H2 outlet Primary Reformer at S/C 3.50 and Tout 780oC (20oC below common Tout) was 573.01 MJ/kmol-H2. It means that decreasing Tout (for tube lifetime increasing) must be compensated with increasing S/C. Keywords: Primary Reformer, Steam to Carbon Ratio, Tube Outlet Temperature
Pemodelan Matematis Dan Penyelesaian Numeris Pada Absorpsi CO2 Dalam Biogas Menggunakan Kolom Bahan Isian Dengan Larutan Methyldiethanolamine (MDEA) Sari Sekar Ningrum; Aswati Mindaryani; Muslikhin Hidayat; Syafrima Wahyu
Jurnal Teknologi Vol 7, No 1 (2019): Jurnal Teknologi
Publisher : Universitas Jayabaya

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (469.24 KB) | DOI: 10.31479/jtek.v7i1.41

Abstract

Biogas merupakan energi terbarukan yang dikembangkan untuk mensubtitusi energi yang berasal dari fosil. Keberadaan CO2  yang tinggi dapat menghambat efisiensi biogas. Oleh sebab itu, dibutuhkan pemurnian biogas dengan melakukan pengurangan kadar CO2 pada biogas. Pengurangan kadar CO2 pada biogas dapat dilakukan dengan cara absorpsi menggunakan MDEA pada kolom bahan isian. Percobaan absorpsi CO2 dilakukan secara kontinyu di dalam kolom absorpsi dengan diameter 6 cm dan panjang 75 cm, bahan isian berupa spiral tembaga dan laju alir cairan 0,15 L/menit. Variasi laju alir gas yang digunakan pada penelitian ini adalah 1 LPM, 1,5 LPM dan 1,8 LPM. Variasi larutan MDEA yang digunakan adalah 20 % dan 35,31 %. Konsentrasi gas CO2 yang keluar dari bagian atas kolom dicatat sebagai fungsi waktu. Data yang diperoleh dimasukkan ke dalam model matematis sehingga kemudian diperoleh nilai KGa dan k2. Pada laju alir gas 1 L/menit; 1,5 L/menit dan 1,8 L/menit dengan konsentrasi MDEA 20% berat diperoleh koefisien transfer massa gas (KGa) kisaran 0,0170 mol/min.atm.L hingga 0,0210 mol/min.atm.L dan konstanta kecepatan reaksi sebesar 450 L/mol.min sedangkan pada konsetrasi MDEA 35,35% berat diperoleh koefisien transfer massa gas (KGa) kisaran 0,0190 mol/min.atm.L hingga 0,0215 mol/min.atm.L dan konstanta kecepatan reaksi sebesar 450 L/mol.min.
Studi Simulasi pada Unit Reformer Primer di PT Pupuk Sriwidjaya Palembang Sigit Abdurrakhman; Sutijan; Muslikhin Hidayat
Jurnal Rekayasa Proses Vol 6, No 2 (2012)
Publisher : Departemen Teknik Kimia Fakultas Teknik Universitas Gadjah Mada

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.22146/jrekpros.4693

Abstract

Pabrik amonia merupakan salah satu pabrik yang terdapat di industri pupuk. Unit Reformer Primer merupakan salah satu alat di pabrik amonia yang merupakan tempat terjadinya reaksi katalitik antara steam dengan metana dikenal dengan proses steam methane reforming. Bahan baku utama adalah steam (H2O) dan gas alam dengan kandungan utama metana (CH4). Penelitian ini membuat model proses unit Reformer Primer untuk menghitung profil temperatur, tekanan dan komposisi untuk kondisi operasi steady state dengan berdasarkan kondisi operasi di pabrik Amonia Pusri 3 PT Pupuk Sriwidjaya Palembang. Asumsi yang digunakan adalah plug flow baik pada sisi furnace maupun pada sisi reaktor katalitik dan kondisi steady state. Untuk menyelesaikan persamaan diferensial ordiner yang digunakan pada penelitian ini dipakai metode Runge Kutta dengan program SciLab sehingga didapat profil konversi dan temperatur di Reformer Primer. Variabel yang mempengaruhi dalam reaksi di Reformer Primer adalah temperatur, tekanan, dan komposisi. Hasil simulasi jika dibandingkan dengan data operasional pabrik menunjukkan ralat rerata 3,94 %. Jika model tersebut digunakan pada berbagai kondisi operasi menghasilkan ralat rerata 7,01 %. Kata kunci: reformer primer, metana, steam, amonia Ammonia plant is the main part of fertilizer industry. Primary reformer is an unit operation where catalytic reaction between steam and methane take place, or it is known as steam methane reforming. The main raw material is steam (H2O) and natural gas with major content of methane (CH4). The objective of this research was to develop primary reformer unit process model to calculate temperature, pressure and composition profiles for steady state operation according to operating condition on Ammonia III plant in PT Pupuk Sriwidjaya Palembang. The assumption used was plug flow model both on the furnace side and on the catalytic reactor side for steady state conditions. The ordinary differential equations were solved using Runge Kutta method with Scilab software to get the conversion, pressure and temperature profiles on primary reformer. Variabels evaluated were temperature, pressure, and composition. The simulation result showed that an average error of 3.94 % compared to the operational plant data. For various operating conditions this simulation showed an average error of 7.01 %. Keyword: primary reformer, methane, steam, ammonia
Studi Tekno-Ekonomi Pemurnian Biogas dari Limbah Domestik Akhwari Wahyu P; Moh Fahrurrozi; Muslikhin Hidayat
Jurnal Rekayasa Proses Vol 6, No 2 (2012)
Publisher : Departemen Teknik Kimia Fakultas Teknik Universitas Gadjah Mada

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.22146/jrekpros.4695

Abstract

Pemurnian biogas untuk meningkatkan nilai kalor pembakaran dan mencegah korosi. Biogas yang berkomposisi 95% CH4 dapat dimanfaatkan sebagai pengganti gas alam kualitas pipeline. Penelitian ini bertujuan mempelajari kelayakan secara teknis dan ekonomi metode pemurnian biogas, nilai production cost, kapasitas scale-up. Penelitian ini menggunakan data sekunder dari pilot plant Biogas Pasar Induk Buah dan Sayuran Gemah Ripah, Gamping, Sleman. Penelitian menghitung nilai production cost dan kapasitas scale-up untuk tiap metode pemurnian biogas. Sensitivity analysis yang dilakukan pada perubahan komposisi gas CH4 terhadap nilai perbandingan laju solven terhadap laju biogas pada menara absorber dan perubahan harga limbah serta perubahan finances. Secara ekonomi pemurnian biogas paling murah menggunakan water scrubber dengan kapasitas minimum 100 ton limbah domestik/hari. Nilai production cost yang lebih rendah dari harga gas alam kualitas pipeline berkisar antara 6-10 US$/MMBtu. Sensitivity analysis menghasilkan perubahan nilai L/G berkisar 0,005-0,025; variasi harga limbah dari penurunan sampai dengan kenaikan 100% dan perubahan finances 0-15 %, masing-masing memberikan perubahan production cost antara 3-8 US$/MMBtu dan 2-14 US$/MMBtu. Kata kunci : pemurnian biogas, limbah domestik, tekno-ekonomi, biometan Biogas purification can increase the caloric value of combustion and prevent corrosion. Biogas with 95% of methane is similar to pipeline quality natural gas. The objective of this research was to study technical and economical feasibility of biogas purification and also to estimate gas production cost and scale up capacities. This research used the secondary data from pilot plant of Biogas of Pasar Induk Buah dan Sayuran Gemah Ripah, Gamping, Sleman, Yogyakarta. This research was to obtain the production cost and scale up capacities for each biogas purification method. The sensitivity analysis was conducted to study the influence of gas composition ranged at 30-70% CH4 toward the flow of absorbent to gas ratio, the price of waste changed from decreasing 100% up to increasing 100% and the finance changed ranged at 0-15% to the change of production cost. The result showed that water scrubber was the cheapest method for scrubbing impurities. The production cost of scale up capacities compared to the price of pipeline quality natural gas which ranged at 6-10 US$/MMBtu. The minimum capacity of economical biogas purification methods was 100 tons waste/day. The influence of gas composition ranged at 30-70% of CH4 produced the L/G value change in the absorber column ranged at 0,005-0,025; the influence of waste price from decreasing and up to increasing 100% and finances from 0-15% produced the production cost change ranged at 3-8 US$/MMBtu and 2-14 US$/MMBtu respectively. Keywords: biogas purification, domestic waste, techno-economic, bio-methane.
Karakterisasi dan Laju Pembakaran Biobriket Campuran Sampah Organik dan Bungkil Jarak (Jatropha curcas L.) Eddy Kurniawan; Wahyudi Budi Sediawan; Muslikhin Hidayat
Jurnal Rekayasa Proses Vol 6, No 2 (2012)
Publisher : Departemen Teknik Kimia Fakultas Teknik Universitas Gadjah Mada

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.22146/jrekpros.4697

Abstract

Potensi limbah biomassa dan bungkil jarak pagar cukup besar dan saat ini belum termanfaatkan. Kedua bahan tersebut dapat diolah menjadi bio-arang melalui proses pirolisis. Bio-arang dapat digunakan sebagai bahan bakar. Tar dan tepung tapioka digunakan sebagai perekat dalam pembuatan briket arang. Pada penelitian ini digunakan briket arang dengan fraksi massa bungkil jarak pagar 0, 25, 50, 75 dan 100%. Percobaan diawali dengan pembuatan arang, penghalusan arang dan pengayakan ukuran 35 mesh, pencampuran bahan baku dengan pelbagai komposisi dengan penambahan perekat (tapioka atau tar) kemudian ditekan dengan tekanan 1 kg/cm2. Selanjutnya, briket dianalisis kuat tekan, kadar air, kadar bahan mudah menguap, kadar abu, karbon terikat dan nilai kalor. Pembakaran briket dilakukan untuk mempelajari laju pembakaran dengan model matematis. Hasil analisis model matematis menunjukkan bahwa laju pembakaran briket pada komposisi bungkil jarak 75% dengan perekat tar, lebih cepat. Briket yang menggunakan perekat tar memberikan asap pada saat dibakar, sedang penggunaan perekat tapioka tidak manghasilkan asap. Model matematis yang diajukan dapat menggambarkan laju pembakaran briket. Parameter kinetik dan laju pembakaran dapat diperoleh dari model yang diajukan. Kata kunci: briket, bahan perekat, laju pembakaran, parameter kinetik The potential of biomass municipal waste and jatropha cakes is abundant, but has not been utilized. These materials can be converted into biobriquette via pyrolisis, which can be used as alternative fuel. Tar and tapioca adhesive were applied for the binder. In this study, briquettes with the mass fraction of jatropha cakes of 0, 25, 50, 75 and 100% were used. Research was done by performing carbonization, screening (35 mesh), mixing raw materials (municipal waste, jatropha cakes, tapioca adhesive and tar adhesive) and pressing at 1 kg/cm². Briquettes were then analyzed for compressive strengh, heating value, the moisture content, volatile matter, ash and fixed carbon. The combustion of the briquette was undertaken to study the rate of combustion. Mathematical model showed that the rate of combustion of the briquette with composition of municipal waste and jatropha oil cakes (25% : 75%) with adhesive tar was faster. Briquettes with adhesive tar produce smoke when burned, while briquettes with tapioca adhesive is smoke-free. Therefore it is more preferable. The proposed mathematical model describes the rate of combustion of the briquette well. The kinetic parameter of the rate of combustion were also obtained. Keywords: Briquette, adhesive materials, rate of combustion, kinetics parameter.
Pengaruh Organic Loading Rate Pada Produksi Biohidrogen dari Sampah Buah Melon (Cucumis melo L.) Menggunakan Reaktor Alir Pipa Nurkholis Nurkholis; Sarto Sarto; Muslikhin Hidayat
Jurnal Rekayasa Proses Vol 11, No 1 (2017)
Publisher : Departemen Teknik Kimia Fakultas Teknik Universitas Gadjah Mada

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.22146/jrekpros.23057

Abstract

The energy crisis and adverse effects from the use of fossil fuels requires the development of energy sources that are non-polluting and renewable, such as bio-H2. Bio-H2 can be produced from organic biomass such as melon fruit waste, because it is available in large quantities and has adequate content of organic fraction. Production of bio-H2 from melon fruit waste done by dark fermentation on the pipe flow reactor consisting of microorganisms acclimatization phase and continuous substrate feeding phase with variation of organic loading rate (OLR) are 6.0443 kg VS/ m3.day (OLR1), 7.6217 kg VS/ m3.day (OLR2) and 26.3152 kg VS/ m3.day (OLR3). Gas and liquid samples taken from the reactor for analysis of H2 concentration, volatile solid (VS) and volatile fatty acid (VFA) The results of the study showed that the production of bio-H2 optimal amounted to 90.8904 mL/ g VS on variations OLR3 is 26.3152 kg VS/ m3.day with substrate degradation efficiency reached 45.39%. The concentration of organic acids produced ranges from 400-800 mg/ L and acetic acid as the dominant product with an average concentration of 442.9276 mg/  L. ABSTRAKKrisis energi dan dampak buruk dari penggunaan bahan bakar fosil menuntut pengembangan sumber energi yang bersifat non-polutif dan terbarukan, misalnya bio-H2. Bio-H2 dapat di produksi dari biomassa organik seperti sampah buah melon, karena terdapat dalam jumlah banyak dan memiliki kandungan fraksi organik yang memadai.  Pada penelitian ini produksi bio-H2 dari sampah buah melon dilakukan secara fermentasi gelap pada reaktor alir pipa yang terdiri dari tahap aklimatisasi mikroorganisme dan tahap pengumpanan substrat secara kontinu. Variasi organic loading rate (OLR) yang digunakan adalah 6.04 kg VS/(m3.hari) (OLR-1), 7.62 kg VS/(m3.hari) (OLR-2) dan 26.32 kg VS/(m3.hari) (OLR-3). Sampel gas dan cairan diambil dari dalam reaktor untuk di analisis kadar H2, kadar volatile solid (VS) dan volatile fatty acid (VFA). Hasil penelitian menunjukkan bahwa produksi bio-H2 yang optimal sebesar 90.89 mL/g VS pada variasi OLR-3 yaitu 26.32 kg VS/(m3.hari) dengan efisiensi degradasi substrat mencapai 45.39%. Konsentrasi asam-asam organik yang dihasilkan berkisar antara 400-800 mg/L dan asam asetat adalah sebagai produk yang dominan dengan konsentrasi rata-rata sebesar 442.93 mg/L.