Claim Missing Document
Check
Articles

Data Augmentation for Hoax Detection through the Method of Convolutional Neural Network in Indonesian News Atik Zilziana Muflihati Noor; Rahmat Gernowo; Oky Dwi Nurhayati
Jurnal Penelitian Pendidikan IPA Vol 9 No 7 (2023): July
Publisher : Postgraduate, University of Mataram

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.29303/jppipa.v9i7.4214

Abstract

The concept of hoax or fake news refers to the intentional spread of false information on social media that aims to confuse and mislead readers to achieve an economic or political agenda. In addition, the increasingly diverse and numerous actors in the field of news writing and dissemination have led to the creation of news articles that need to be recognized whether they are credible or not. Furthermore, hoax can harm the social and political aspects of Indonesian society. Central Connecticut University released a study entitled The World's Most Literate Nations in 2016, where Indonesia ranked 60th out of 61 countries, indicating that Indonesian media literacy still needs to improve in critically evaluating information and distinguishing between fake news and valid news. Based on this description, the research will create the Synonym-Based Data Augmentation for Hoax Detection using the Convolutional Neural Network (CNN ) method and Easy Data Augmentation (EDA). This research resulted in an accuracy of 8,.81, indicating that it can be stated to be accurate in detecting hoax news
Perancangan Sistem Cluster Server untuk Jaminan Ketersediaan Layanan Tinggi pada Lingkungan Virtual Yudi Restu Adi; Oky Dwi Nurhayati; Eko Didik Widianto
Jurnal Nasional Teknik Elektro dan Teknologi Informasi Vol 5 No 2: Mei 2016
Publisher : Departemen Teknik Elektro dan Teknologi Informasi, Fakultas Teknik, Universitas Gadjah Mada

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (1137.477 KB)

Abstract

Computer based services are now used in various fields, such as business, health, and education. The objective is to improve the performance of the company, institution, or organization. Services and data are stored in a server machine. Therefore, the server machine becomes an important thing that supports the availability of services, beside network infrastructure and electricity. The server machine may have hardware failure or software crash. The server machine can be down because of a power failure, human error, or disaster. The server machine sometimes must be turned off for upgrades or maintenance purposes. When a server is down, services running on the server will stop and important data can be lost. The objective of this research is to build a server cluster system that supports high availability services and data integrity over a virtual environment. The result of this research is a cluster server system that supports high availability services over the virtual environment and guarantee data integrity using server virtualization Proxmox VE 3.4 on two computer machines, FreeNAS x86 9.2.1.9 as a NAS server, two units of the Cisco Catalyst 2960 switch, and DRBD for data synchronization.
Klasifikasi Penyakit Daun Kopi Robusta Menggunakan Metode SVM dengan Ekstraksi Ciri GLCM Agus Supriyanto; R. Rizal Isnanto; Oky Dwi Nurhayati
Jurnal Nasional Teknik Elektro dan Teknologi Informasi Vol 12 No 4: November 2023
Publisher : Departemen Teknik Elektro dan Teknologi Informasi, Fakultas Teknik, Universitas Gadjah Mada

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.22146/jnteti.v12i4.8044

Abstract

Many farmers in Indonesia derive their income from coffee plants, which also play a crucial role in the country’s foreign exchange earnings. However, coffee plant production may decrease due to pests and disease attacks. Leaf diseases, such as leaf spot (Cercospora coffeicola) and leaf rust (Hemileia vastatrix), are among the most common diseases to occur in coffee plants. This research seeks to identify leaf diseases in robusta coffee leaves and determine the classification. The application of machine learning-based image processing using the support vector machine (SVM) classification method based on the gray-level co-occurrence matrix (GLCM) feature extraction can be the proposed solution. The preprocessing must precede the processing stage for easier analysis of the image’s quality. Then, the k-means clustering segmentation process was conducted to distinguish leaf parts affected by leaf spot and rust from those unaffected. The GLCM method was employed as the feature extraction based on the angular second moment (ASM) or energy features, contrasts, correlations, inverse different moment (IDM) or homogeneities, and entropy with angles of 0°, 45°, 90°, and 135°, as well as inter-pixel distances of 1 until 3. The classification was done with the SVM method using the linear, polynomial, and radial basis function (RBF) Gaussian kernels. This research used leaf spot and rust images, with training and test data of 320 and 80 images, respectively. The RBF Gaussian achieved the best test results with the best accuracy of 97.5%, precision of 95.24%, recall of 100%, and F1-score of 97.56%.
Penerapan Alat Cuci Tangan Otomatis di POS PAUD Harapan Bangsa Dania Eridani; Ike Pertiwi; Risma Septiana; Oky Dwi Nurhayati; Eko Didik Widianto
Prosiding Seminar Nasional Unimus Vol 4 (2021): Inovasi Riset dan Pengabdian Masyarakat Post Pandemi Covid-19 Menuju Indonesia Tangguh
Publisher : Universitas Muhammadiyah Semarang

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

Selama pandemi Covid 19, hampir seluruh kegiatan yang ada di masyarakat di jalankan secaradaring kecuali sektor-sektor kritikal. Berdasarkan keputusan kementrian pendidikan dankebudayaan Nomor 03/KB/2021, kegiatan pendidikan selama pandemi dapat dilakukan dengan duacara, yaitu pembelajaran jarak jauh atau daring dan pembelajaran dengan tatap muka terbatasdengan menerapkan protokol kesehatan secara maksimal. Pos PAUD Harapan Bangsa merupakantempat pembelajaran bagi anak usia dini yang berlokasi di Dukuh Pengkol RT 06 RW 07 RowosariTembalang Semarang. Selama masa pandemi ini, kegiatan pendidikan yang berjalan belum memilikijadwal aktivitas rutin dan dijalankan dengan proses tatap muka terbatas. Protokol kesehatanmenjadi hal utama yang perlu diperhatikan mengingat masih adanya proses tatap muka antarapendidik dan anak didik. Permasalahan yang ada adalah anak usia dini merupakan usia rentankarena belum melaksanakan vaksin dan mempunyai kebiasaan kurang memperhatikan perlunya cucitangan dalam kehidupan sehari-hari. Oleh karena itu, perlu adanya penerapan alat cuci tangansebagai salah satu alat protokol kesehatan penunjang kegiatan tatap muka. Hasil kegiatanpengabdian ini adalah meningkatkan protokol kesehatan yang ada di Pos PAUD Harapan Bangsadengan melakukan perancangan alat cuci tangan otomatis, penerapan alat cuci tangan otomatis, danmengajarkan cara mencuci-tangan yang benar kepada anak-anak didik. Kata Kunci : cuci-tangan, protocol kesehatan, alat cuci tangan otomatis.
Pengaruh Perbedaan Metode Penggorengan Terhadap Kualitas Fisik dan Organoleptik Aneka Camilan Sehat Isti Pudjihastuti; Siswo Sumardiono; Oky Dwi Nurhayati; Yusuf Arya Yudanto
Prosiding Seminar Nasional Unimus Vol 2 (2019): Tantangan Implementasi Hasil Riset Perguruan Tinggi untuk Industrialisasi
Publisher : Universitas Muhammadiyah Semarang

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

Penggorengan merupakan salah satu upaya proses pengolahan berbagai makanan salah satunya adalah aneka camilan yang banyak digemari oleh penduduk diIndonesia. Tujuan dari penelitian ini adalah untuk mengetahui kondisi keamanan pangan yang dilihat dari metode /proses penggorengannya. Metode penggorengan yang dilakukan ada dua yaitu pan frying dan deep frying. Perbedaan metode dan kondisi proses penggorengan akan berpengaruh terhadap kualitas  produk akhir yang dihasilkan.  Penggorengan dapat mentransfer suatu massa produk yang ditandai dengan adanya penyerapan minyak dan migrasi air yang menguap melalui minyak goreng. Vaariabel yang diuji adalah sifat fisik  meliputi warna, daya ikat air dan kerenyahan  serta organoleptic meliputi rasa, warna, tekstur dan mouthfell. Hasil penelitian  menunjukkan bahwa perbedaan metode penggorengan menghasilkan kualitas fisik dan organoleptic aneka camilan  yang berbeda.Kualitas fisik berupa daya ikat air dan kerenyahan metode pan frying 63,5%; 13,25 mm/50 gr; deep frying  84,35%, 19,6 mm/50gr. Sedaangkan kualitas organoleptic aneka camilan yang dihasilkan mempunyai rata-rata kesukaan panelis pada metode pan2,65, deep frying  3,80. Kesimpulan percobaan ini adalah metode deep frying  merupakan metode yang tepat dalam menggoreng aneka camilan agar dihasilkan produk akhir yang baik dari segi fisik maupun organoleptic.Kata kunci: Camilan, deep frying, organoleptic, pan frying
Klasifikasi Jenis Ikan Laut K-Nearest Neighbor Berdasarkan Ekstraksi Ciri 2-Dimensional Linear Discriminant Analysis Yusraka Dimas Al Iman; R Rizal Isnanto; Oky Dwi Nurhayati
Jurnal Teknologi Informasi dan Ilmu Komputer Vol 10 No 4: Agustus 2023
Publisher : Fakultas Ilmu Komputer, Universitas Brawijaya

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.25126/jtiik.20241046787

Abstract

Indonesia adalah suatu negara kepulaun yang memiliki 2/3 wilayah lautan, secara sektor indonesia memiliki potensi pangan yang sangan besar dalam sektor perikanan. Ikan di dunia yang berhasil diuraikan sebanyak 27.000 terutama paling banyak dilaut indonesai. Ikan adalah salah satu keanekaragaman biologi yang menyusun ekosistem bahari. Ikan mempunyai bentuk serta ukuran eksklusif yang berbeda jenis yang satu dangan jenis yang lain. Pengenalan spesies ikan umumnya dilakukan secara manual dengan pengamatan mata. Tujuan penelitian ini untuk mengenali spesies ikan laut. 2-Dimensional Linear Discriminant Analysis (2D-LDA) dipergunakan untuk ekstraksi ciri dan K-Nearest Neighbor (K-NN) dipergunakan untuk klasifikasi jenis ikan laut. Fitur 2-Dimensional Linear Discriminant Analysis (2D-LDA) yang diekstraksi untuk menghasilkan dua matrik baru yaitu matrik score. Klasifikasi menggunakan metode K-Nearest Neighbor (K-NN) dengan membandingkan nilai k-n. Penelitian ini menggunakan 5 jenis ikan laut, dengan total data latih 800 gambar dan data uji 160 gambar. Hasil percobaan tebaik diperoleh k-9 dengan tingkat akurasi terbaik sebesar 93,12%, presisi 82,05%, recall 100%, dan F-1 score 90,14%.AbstractIndonesia is an archipelagic country which has 2/3 of the sea area, in terms of sector Indonesia has enormous food potential in the fisheries sector. There are 27,000 fish in the world that have been successfully described, especially in the Indonesian seas. Fish is one of the biological diversity that makes up the marine ecosystem. Fish have specific shapes and sizes that differ from one type to another. The identification of fish species is generally done manually by eye observation. The purpose of this research is to identify marine fish species. 2-Dimensional Linear Discriminant Analysis (2D-LDA) is used for feature extraction and K-Nearest Neighbor (K-NN) is used for classification of marine fish species. The 2-Dimensional Linear Discriminant Analysis (2D-LDA) features were extracted to produce two new matrices, namely the score matrix. The classification uses the K-Nearest Neighbor (K-NN) method by comparing the k-n values. This study used 5 types of marine fish, with a total of 800 images of training data and 160 images of test data. The best experimental results were obtained by k-9 with the best accuracy rate of 93.12%, precision of 82.05%, recall of 100%, and F-1 score of 90.14%.
Evaluation of High-Performance Interference Canceller to Boost the Error Performance of The Wi-Fi 5 IEEE 802.11ac Syafei, Wahyul Amien; Hidayatno, Achmad; Nurhayati, Oky Dwi; Nugraheni, Dinar
TEKNIK Vol. 45, No. 1 (2024): May 2024
Publisher : Diponegoro University

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.14710/teknik.v45i1.60252

Abstract

The Wi-fi 5 IEEE 802.11ac can achieve throughput up to 6,933 Mbps by occupying 160MHz of bandwidth in each eight spatial streams with 256-QAM. It provides not only very high throughput but also high performance of wireless communications. However, due to the use of multiple antennas at both transmitter and receiver side which operate in the same frequency band; it experiences many interference signals. Therefore, a high-performance interference canceller is highly required to cancel these interferences and get the desired information back. The conventional interference cancellers are based on linear method, i.e. zero forcing and minimum mean square error. Both are simple but low in performance. This paper presents evaluation of a high-performance interference canceller based on maximum likelihood detection to boost the error performance of the wi-fi 5. Run test under in-door channel model demonstrates the superiority of this interference canceller. For target bit error rate of 10-4, it dramatically boosts the error performance by 16 dB and 17,5 dB compared to linear methods by the cost of very high complexity.
Gaussian filter-based dark channel prior for image dehazing enhancement Nurhayati, Oky Dwi; Surarso, Bayu; Syafei, Wahyul Amien; Nugraheni, Dinar Mutiara Kusumo
International Journal of Electrical and Computer Engineering (IJECE) Vol 14, No 5: October 2024
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijece.v14i5.pp5765-5778

Abstract

The presence of haze in an image is one of the challenges in computer vision tasks, such as remote sensing, object monitoring, and traffic monitoring applications. The hazy image is considered to contain noise and it can interfere with the image analysis process. Thus, image dehazing becomes a necessity as part of image enhancement. Dark channel prior (DCP) is one of the images dehazing methods that works based on a physical degradation model and utilizes low-intensity values from outdoor image characteristics. The DCP method generally consists of some steps, which are finding the dark channel and gradient image, estimating the sky region, atmospherical light, and transmission map, and reconstructing the dehazed image. This study introduces image dehazing by utilizing the Gaussian filter combined with the DCP method to increase the sharpness and accentuate the details of hazy images. Experimental results show that the proposed method could produce dehazed images with a visual quality is 18.94 dB on average or an increase of 11.91% compared to the original hazy image with a similarity index is 66.71% on average or an increase of 8.10%. Therefore, it is expected that this study can contribute to the image dehazing method enrichment based on DCP.
Analysis of Naïve Bayes and K-Nearest Neighbors Algorithms for Classifying Fishermen Aid Eligibility Muhammad Nasrullah; Bayu Surarso; Oky Dwi Nurhayati
Jurnal Penelitian Pendidikan IPA Vol 10 No 10 (2024): October
Publisher : Postgraduate, University of Mataram

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.29303/jppipa.v10i10.8818

Abstract

This article analyzes the use of data mining with Naïve Bayes and K-Nearest Neighbor (KNN) algorithms to build classification models and evaluate their performance in identifying fishermen eligible for aid. The study aims to compare the effectiveness of these algorithms in handling imbalanced datasets using the Synthetic Minority Over-sampling Technique (SMOTE). The research applies SMOTE to improve the balance of the dataset before classification. Without SMOTE, Naïve Bayes achieved an accuracy of 97.01%, precision of 94.16%, recall of 96.67%, and F1-score of 95.39%. KNN, on the other hand, reached an accuracy of 94.04%, precision of 94.53%, recall of 86.00%, and F1-score of 90.06%. After applying SMOTE, both algorithms improved: Naïve Bayes attained an accuracy of 98.33%, precision of 96.86%, recall of 100.00%, and F1-score of 98.49%, while KNN reached an accuracy of 96.90%, precision of 97.72%, recall of 96.19%, and F1-score of 96.94%. The results show that Naïve Bayes, with SMOTE, outperforms KNN in managing data imbalance and accurately classifying eligible fishermen for aid.
Pembelajaran Daring Berbasis Youtube dan Open Broadcasting System Bagi Guru-guru MA Muallimin Muallimat Rembang Oky Dwi Nurhayati; Bayu Surarso; Migunani Migunani; Ahmad Aviv Mahmudi
Buletin Abdi Masyarakat Vol 4, No 2 (2024): Edisi Februari 2024
Publisher : Universitas YPPI Rembang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.47686/bam.v4i2.670

Abstract

The development of Information and Communication Technology (ICT) as a learning medium requires teachers to have adequate knowledge and skills in integrating it into each subject so that the quality of learning can be improved. One of the phenomena currently visible is that teachers have not been able to use ICT properly as a learning medium. This is caused by many factors, including lack of knowledge and skills, wrong views about ICT. Madrasah Aliyah Mu'allimin Mu'allimat Rembang (M3R) is located on the outskirts of Rembang city, precisely in Kabongan Kidul Village, Rembang District, Rembang Regency. The number of students actively studying is 360 students, taught by 25 teachers and the support of 6 educational staff. . M3R as an institution is also required to provide the latest innovations to form an effective learning process. However, not all teachers and educational staff do not understand the latest innovations that must be used to carry out learning by utilizing internet media which can be utilized optimally. Due to the lack of teachers' ability to create content or learning materials and classroom teaching online, it is necessary to increase the capacity and skills of teachers in creating content and managing online teaching. The method used in the PkM program provides training and practice as well as assistance in the use of information and communication technology in learning activities at schools using open broadcasting systems and YouTube. The outcome of this PkM program is that teachers master and are able to create and use learning media using open broadcasting systems and YouTube and implement them as learning media.Keywords: Information and Communication Technology, open broadcasting system, YouTube, content, learning
Co-Authors Achmad Hidayatno Adhi Susanto Adi Mora Tunggul Adi, Yudi Restu Agung Budi Prasetijo Agung Budi Prasetijo Agus Subhan Akbar, Agus Subhan Agus Subkhi Hermawan Agus Supriyanto Ahmad Aviv Mahmudi Ahmad Muzami Aji Yudha Alim Muadzani Ambrina Kundyanirum Amrina Rosyada Anggi Anugraha Putra Anggit Sri Herlambang Anggoro Mukti Anisa Eka Utami Annisa Hedlina Hendraputri Arief Puji Eka Prasetya Atik Zilziana Muflihati Noor Aulia Medisina Ramadhan Bayu Surarso Budi Warsito Catur Edi Widodo Damar Wicaksono Danal Meizantaka Daeanza Dania Eridani Dania Eridani Dania Eridani Deryan Gelrandy Diana Nur Afifah, Diana Nur Dinar Mutiara Kusumo Nugraheni Dwiana Okviandini Eggy Listya Sutigno Eko Didik Widianto Eko Sediyono Fardana, Nouvel Izza Fathuddin, Harits Febi Andrea Renatha Galuh Boy Hertantyo Gayuh Nurul Huda Hadi Hilmawan Hanna Mariana Baun, Hanna Mariana hastuti, Isti Pudji Hendra Pria Utama Hengki Hengki Ike Pertiwi Ike Pertiwi Windasari Ike Pertiwi Windasari Ikhsan, Hammas Zulfikar Imaduddin Abdul Rahim Indra Aditia Indra Permana Isti Pudjihastuti Julce Adiana Sidette, Julce Adiana Juwanda, Farikhin Keszya Wabang Kurniawan Teguh Martono Kusworo Adi Lazuardi Arsy Lia Dorothy M Irfan Syarif Hidayatullah M. Rizki Kurniawan Maesadji Tjokronagoro Menur Wahyu Pangestika, Menur Wahyu Mey Fenny Wati Simanjuntak Mifta Ardianti Migunani Migunani Muhammad Hafiz Tsalavin Muhammad Nasrullah Muhammad Naufal Prasetyo Muhammad Reza Setiawan Muhammad Ridwan Asad Mustafid Mustafid Naretha Kawadha Pasemah Gumay Ningrum, Alifvia Arvi Ninik Rustanti Nofiyati Nofiyati, Nofiyati Nugraheni, Dinar Nugroho Adhi Santoso Nurazizah Nurazizah Nurhuda Maulana Nurul Arifa Nuryanto . Otong Saeful Bachri Prio Pambudi R Rizal Isnanto R Rizal Isnanto R. Rizal Isnanto R. Rizal Isnanto Rahmat Gernowo Reza Najib Hidayat Rian Haris Muda Nasution Rinta Kridalukmana Risma Septiana Rismawan Fajril Falah Riyadhi Sholikhin Satriaji Cahyo Nugroho Siswo Sumardiono Sri Widodo, Thomas Suryo Mulyawan Raharjo Suryono Suryono Teguh Hananto Widodo Thomas Sri Widodo Tristy Meinawati Tyas Panorama Nan Cerah Ulinuha, Ajik Wahyul Amien Syafei Wijaya Wahyudi Akbar Yessy Kurniasari Yudhi Kasih Pasaribu Yudi Eko Windarto Yudi Restu Adi Yusraka Dimas Al Iman Yusuf Arya Yudanto Zaskia Wiedya Sahardevi