Claim Missing Document
Check
Articles

Found 1 Documents
Search
Journal : JOIV : International Journal on Informatics Visualization

Comparison Architecture of Convolutional Neural Network for Fertility Level of Paddy Soil Detection Natsir, Muh. Syahlan; Suyuti, Ansar; Nurtanio, Ingrid; Palantei, Elyas
JOIV : International Journal on Informatics Visualization Vol 9, No 5 (2025)
Publisher : Society of Visual Informatics

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.62527/joiv.9.5.3342

Abstract

This study proposes to detect the fertility of paddy soil based on texture, the power of Hydrogen (pH), and the amount of production. Fertile paddy soil provides essential nutrients and supports optimal plant growth. Therefore, monitoring and analyzing soil fertility is crucial in agricultural land management, which significantly increases rice yields. Paddy soil is categorized into three parts: very fertile soil, fertile soil, and reasonably fertile soil. This research proposes a new approach to detecting soil fertility levels based on factors that influence soil fertility using the Convolutional Neural Network (CNN) algorithm. There are 558 paddy soil datasets of 178 very fertile datasets, 135 fertile datasets, and 245 quite fertile datasets. In this research, we conducted trials using the CNN, Resnet, Enet, and VGG19 models. According to the test results, the CNN model using the Adam optimizer and a learning rate of 0.001 achieves the highest training accuracy of 0.9687 and validation accuracy of 0.8333. This suggests that this model can accurately identify the fertility of paddy soil, making it easier to calculate the fertility of paddy soil through its use. Future research can expand this study by integrating additional soil parameters, such as nitrogen, phosphorus, potassium levels, and organic matter content, to improve classification accuracy further. Additionally, employing multimodal data sources, such as remote sensing and hyperspectral imaging, could enhance the model's robustness in various environmental conditions. Further optimization of deep learning architectures and Artificial Intelligence (AI) techniques can also provide better interpretability and usability for agricultural stakeholders.
Co-Authors A. Ais Prayogi Alimuddin A. Marimar Muchtamar A.Ais Prayogi Abdul jalil Adnan Adnan Adnan Adnan Adnan Adnan Ady W Paundu Ady Wahyudi Ady Wahyudi Paundu Ady Wahyudi Paundu Ahmad Rifaldi Ais P Alimuddin Ais Prayogi Alimuddin Alif Tri Handoyo Alimuddin, A.Ais Prayogi Amil A Ilham Amil A Ilham Amil A. Ilham Amil Ahmad Ilham Amil Ahmad Ilham Amirullah, Indrabayu Andani Achmad Ansar Suyuti Anugrayani Bustamin Anugrayani Bustamin Anugrayani Bustamin Anugrayani Bustamin Areni, Intan Sari Astri Oktianawaty Aswandi, Andi Syam Aulia Darnilasari Bustamin, Anugrahyani Bustamin, Anugrayani Chandra Wisnu Nugroho Christoforus Yohanes Elly Warni Elly Warni elly warni Febriansyah, Muhammad Firmansyah J Kusuma Fransisca J Pontoh Hazriani, Hazriani I Ketut Eddy Purnama Ida Ayu Putu Sri Widnyani Ida R Sahali Imran Taufiq Indra Bayu Indrabayu - Indrabayu . Indrabayu Indrabayu Indrabayu Indrabayu Intan Sari Areni Intan Sari Areni Intan Sari Areni Iqra Aswad Iqra Aswad Jayanti Yusmah Sari Leonard Maramis Leonard, Calvin Rinaldy Lika Purwanti M Alief F Imran Mahdaniar, Mahdaniar Marindah, Tyanita Puti Mauridhi Hery Purnomo Mochamad Hariadi Mokobombang, Novy Nur R A Mokobombang, Novy Nur R.A Muh. Alief Fahdal Imran Oemar Muh. Syahlan Natsir Muhammad Indra Abidin Muhammad Niswar Muhammad Nizwar Mukarramah Yusuf Mukarramah Yusuf Musakkir Musakkir Musyfirah, Kamtina Naufal Khalil Novy NRA Mokobombang Nur Hikmah Nurdin, Arliyanti Nurdin, Winati Mutmainnah Nurhikmayana Janna Palantei, Elyas Paundu, Ady Wahyudi Rahmat Hardian Putra Rieka Zalzabillah Putri RIFALDI, AHMAD Riny Yustica Dewi Rizka Irianty Siska Anraeni Syafruddin Syarif Usman Umar Yohannes, Christoforus Yohannes, Chystoporus Yusuf, Mukarramah Zaenab Muslimin Zaenab Muslimin Zahir Zainuddin Zahir Zainuddin Zulkifli Tahir