Claim Missing Document
Check
Articles

Found 22 Documents
Search

THE EFFECTIVENESS OF USING INTERPALS TO SUPPORT STUDENTS IN THEIR LANGUAGE LEARNING Sudirman; M. Ferdinansyah; Ridwansyah, Muhammad; Parlindungan, Edison; Setiabudi, Arifin
JOLADU: Journal of Language Education Vol. 3 No. 3 (2025): JOLADU: Journal of Language and Education
Publisher : ASIAN PUBLISHER

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.58738/joladu.v3i3.874

Abstract

The study is aimed at finding insights into the effectiveness of using Interpals as a language learning tool and inform educators on how to better support students in their language learning activities. The methodology to collect data is study literature reviews on the topic. By gathering information from multiple sources, the research aims to provide a comprehensive understanding of the role of Interpals in language learning and its potential impact on students' linguistic and cultural development. Interpals provides a unique and valuable opportunity for language learners to practice and improve their language skills through interactions with native speakers. By actively engaging with users from different cultural backgrounds and utilizing the language exchange features on the platform, users can enhance their language learning experience and gain a deeper understanding of different cultures. Through consistent practice and meaningful conversations with native speakers, users can improve their language skills and build lasting connections with individuals from around the world. By immersing themselves in authentic language exchanges, users can gain insight into different perspectives and broaden their cultural knowledge. Ultimately, Interpals offers a unique opportunity for language learners to not only improve their language proficiency but also foster meaningful cross-cultural relationships.
Analisis dan Prediksi Kelayakan Air Minum Menggunakan Algoritma Random Forest Rohima Zalti, Ulfani; Rose Darmakusuma, Dinda; Ridwansyah, Muhammad; Ismanto, Edi
JURNAL FASILKOM Vol. 15 No. 2 (2025): Jurnal FASILKOM (teknologi inFormASi dan ILmu KOMputer)
Publisher : Unversitas Muhammadiyah Riau

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.37859/jf.v15i2.9906

Abstract

Air merupakan komponen pembangun tubuh manusia yang paling penting. Pada tubuh manusia dewasa, hingga 60% terdiri dari air. Konsumsi air yang tidak layak konsumsi dapat berefek buruk terhadap kesehatan karena dapat menyebabkan diare, keracunan, dan bahkan penyakit serta infeksi akibat bakteri seperti Escherichia coli. Oleh karena itu, penting untuk memiliki sistem yang mampu memprediksi kelayakan air secara akurat dan efisien. Water potability merujuk pada tingkat keamanan air untuk dikonsumsi manusia tanpa menyebabkan risiko kesehatan. Namun, hasil evaluasi kualitas air dapat bervariasi tergantung dari parameter yang digunakan, seperti pH, kadar klorin, dan zat kimia lainnya. Artikel ini menyajikan studi komparatif berbagai algoritma klasifikasi machine learning untuk memprediksi kelayakan air berdasarkan indikator kimia yang terdapat dalam dataset Water Potability. Model yang digunakan antara lain Logistic Regression, Decision Tree, Random Forest, dan Extra Trees Classifier. Hasil pengujian menunjukkan bahwa algoritma Random Forest menghasilkan akurasi terbaik sebesar 66,6%, sehingga direkomendasikan untuk digunakan dalam tugas klasifikasi kelayakan air minum secara otomatis dan berbasis data.