Air merupakan komponen pembangun tubuh manusia yang paling penting. Pada tubuh manusia dewasa, hingga 60% terdiri dari air. Konsumsi air yang tidak layak konsumsi dapat berefek buruk terhadap kesehatan karena dapat menyebabkan diare, keracunan, dan bahkan penyakit serta infeksi akibat bakteri seperti Escherichia coli. Oleh karena itu, penting untuk memiliki sistem yang mampu memprediksi kelayakan air secara akurat dan efisien. Water potability merujuk pada tingkat keamanan air untuk dikonsumsi manusia tanpa menyebabkan risiko kesehatan. Namun, hasil evaluasi kualitas air dapat bervariasi tergantung dari parameter yang digunakan, seperti pH, kadar klorin, dan zat kimia lainnya. Artikel ini menyajikan studi komparatif berbagai algoritma klasifikasi machine learning untuk memprediksi kelayakan air berdasarkan indikator kimia yang terdapat dalam dataset Water Potability. Model yang digunakan antara lain Logistic Regression, Decision Tree, Random Forest, dan Extra Trees Classifier. Hasil pengujian menunjukkan bahwa algoritma Random Forest menghasilkan akurasi terbaik sebesar 66,6%, sehingga direkomendasikan untuk digunakan dalam tugas klasifikasi kelayakan air minum secara otomatis dan berbasis data.