Claim Missing Document
Check
Articles

Found 6 Documents
Search
Journal : Kubik

Peramalan Konsentrasi Particulate Matter 2.5 (PM2.5) menggunakan Model Vector Autoregressive dengan Metode Maximum Likelihood Estimation Budi Nurani Ruchjana; Atika Tresna Arianto; Kankan Parmikanti; Bambang Suhandi
KUBIK Vol 6, No 1 (2021): KUBIK: Jurnal Publikasi Ilmiah Matematika
Publisher : Jurusan Matematika, Fakultas Sains dan Teknologi, UIN Sunan Gunung Djati Bandung

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.15575/kubik.v6i1.8046

Abstract

Particulate Matter 2.5 yang selanjutnya disingkat PM2.5 merupakan partikel udara yang memiliki ukuran . Paparan PM2.5 dapat mempengaruhi fungsi paru-paru dan memperburuk kondisi kesehatan seperti asma, bronkitis hingga kanker paru-paru. PM2.5 berasal dari berbagai sumber seperti hasil pembakaran bahan bakar kendaraan bermotor, hingga kebakaran hutan. Untuk meramalkan Konsentrasi PM2.5 dapat digunakan model time series univariat, salah satunya model Autoregressive yang selanjutnya disingkat AR. Data Konsentrasi PM2.5 memiliki pola stasioner, sehingga dapat dibangun model AR. Konsentrasi PM2.5 di suatu wilayah dipengaruhi oleh Konsentrasi PM2.5 wilayah di sekitarnya pada waktu-waktu sebelumnya, sehingga dapat dibentuk model Vector Autoregressive yang selanjutnya disingkat VAR. Metode yang digunakan untuk menaksir model VAR dalam penelitian ini adalah metode  Maximum Likelihood Estimation yang selanjutnya disingkat MLE dengan bantuan software R dan Microsoft Excel. Model VAR diterapkan untuk peramalan jangka pendek Konsentrasi PM2.5 di Kab. Cirebon, Kab. Kuningan, dan Kab. Majalengka. Hasil penelitian menunjukkan bahwa  konsentrasi  PM2.5 di ketiga kabupaten memiliki korelasi yang cukup tinggi dan satu sama lain saling mempengaruhi, sehingga penggunaan model VAR dapat memberikan rekomendasi untuk peramalan konsentrasi PM2.5  pada waktu mendatang dengan memperhitungkan pengaruh konsentrasi PM2.5 dari lokasi-lokasi terdekat di sekitar lokasi tertentu.
Penerapan Model Regresi Data Panel pada Faktor Fundamental dan Teknikal Harga Saham Sektor Industri Real Estate Novi - Saputri; Budi Nurani Ruchjana; Endang Soeryana Hasbullah
KUBIK Vol 5, No 1 (2020): KUBIK: Jurnal Publikasi Ilmiah Matematika
Publisher : Jurusan Matematika, Fakultas Sains dan Teknologi, UIN Sunan Gunung Djati Bandung

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.15575/kubik.v5i1.7939

Abstract

Regresi data panel merupakan regresi yang menggabungkan data runtut waktu dan data antar individu. Salah satu model regresi data panel adalah model fixed effect. Model ini mengasumsikan bahwa koefisien slope bernilai konstan, tetapi koefisien intersep bervariasi sepanjang individu. Estimasi yang dilakukan yaitu dengan penambahan variabel dummy untuk menjelaskan perbedaan karakteristik antar individual atau biasa disebut metode least square dummy variable. Data yang digunakan merupakan data dari Bursa Efek Indonesia yang diduga berpengaruh terhadap harga saham. Terdapat dua pendekatan yang digunakan untuk mempengaruhi harga saham, yaitu faktor fundamental dan faktor teknikal. Pada penelitian ini, variabel faktor fundamentalnya adalah return on asset (ROA), price to book value (PBV), earning per share (EPS) dan debt to equtity ratio (DER). Sedangkan variabel faktor teknikalnya adalah volume perdagangan saham (VS). Berdasarkan hasil analisis, model mengalami masalah autokorelasi dan heteroskedastisitas, sehingga model fixed effect lebih baik diestimasi dengan metode seemingly uncorrelated regression. Hasil yang diperoleh dari penelitian ini adalah variabel faktor fundamental dan teknikal mempengaruhi harga saham di masing-masing perusahaan sektor industri  real estate yang terdaftar di Bursa Efek Indoesia secara simultan maupun parsial.
Perbandingan Penerapan Metode Agglomerative dengan Metode K-Means pada Data Curah Hujan di Wilayah Bogor Budi Nurani Ruchjana; Hera Khoirunnisa; iin Irianingsih; Bambang Suhandi
KUBIK Vol 5, No 2 (2020): KUBIK: Jurnal Publikasi Ilmiah Matematika
Publisher : Jurusan Matematika, Fakultas Sains dan Teknologi, UIN Sunan Gunung Djati Bandung

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.15575/kubik.v5i2.7581

Abstract

Bogor merupakan salah satu wilayah di Jawa Barat yang dijuluki sebagai kota hujan karena memiliki curah hujan relatif lebih besar dibandingkan dengan wilayah lain sehingga perlu diadakannya pengelompokan wilayah berdasarkan tinggi rendahnya curah hujan sebagai acuan pemerintah dalam penanganan bencana. Teknik statistika multivariat yang bertujuan untuk mengelompokan objek berdasarkan karakteristiknya adalah analisis cluster. Metode analisis cluster yang digunakan penelitian ini yaitu Agglomerative dan K-Means. Perbedaan yang signifikan dari kedua metode tersebut terdapat pada proses pembentukan cluster. Oleh karena itu, tujuan pada penelitian ini adalah membandingkan metode yang tebaik berdasarkan kerapatan cluster. Data yang digunakan dalam penelitian ini adalah data agregat curah hujan bulanan musim basah dari 24 stasiun pos hujan di wilayah Bogor. Hasil penelitian ini adalah wilayah Bogor dapat dibagi menjadi 2 cluster yaitu cluster 1 kategori curah hujan sedang dan cluster 2 kategori curah hujan tinggi dengan perbandingan nilai kerapatan cluster kedua metode menghasilkan nilai yang sama yaitu sebesar 49,4% sehingga kedua metode tersebut baik untuk digunakan dalam pembentukan cluster curah hujan di wilayah Bogor dan bisa dijadikan sebagai rekomendasi bagi instansi terkait penggunaan data curah hujan seperti LAPAN dan BMKG.
Penerapan Perangkat Lunak RStudio untuk Penaksiran Parameter Model Spatial Autoregressive Salsabil, Tsuroyya; Kusuma, Dianne Amor; Ruchjana, Budi Nurani
KUBIK Vol 8 No 1 (2023): KUBIK: Jurnal Publikasi Ilmiah Matematika
Publisher : Jurusan Matematika, Fakultas Sains dan Teknologi, UIN Sunan Gunung Djati Bandung

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.15575/kubik.v8i1.30037

Abstract

Research and analysis that are not only based on time (temporal) but also on space (spatial) require tools in the form of software to ensure that the data analysis and processing yield good, fast, and accurate results. One of the software tools that can be used for this purpose is RStudio software. The advantages of RStudio include being open-source software (OSS), which can be used freely without cost, and it has many packages and functions that can facilitate data processing. One of the spatial-based analyses is spatial data analysis. The structure within RStudio allows users to call functions related to spatial data analysis, perform computations with sparse matrices (matrices with many zero values), such as spatial weight matrices, estimation of spatial model parameters, and so on. This research examines the application of RStudio software in estimating the parameters of a first-order Spatial Autoregressive (SAR) model using the Maximum Likelihood Estimation (MLE) method on the data of the designation of Intangible Cultural Heritage (ICH) in Indonesia. Based on the results of applying RStudio software, a first-order SAR model with a Queen contiguity weight matrix for the categories of Traditional Customs, Rituals, and Celebrations (TCRC) and Performing Arts (PA) with the minimum Akaike Information Criterion (AIC) value and maximum pseudo- value was obtained for predicting the designation data of ICH in Indonesia. The application of RStudio software to the first-order SAR model for the designation data of ICH in Indonesia speeds up and simplifies calculations, making it suitable as a recommendation for relevant agencies such as the Department of Culture, Tourism, Youth, and Sports (Disbudparpora). 
Penerapan Model Geographically Weighted Regression pada Data Penetapan Warisan Budaya Takbenda di Indonesia Pratomo, Firdaus Ryan; Kusuma, Dianne Amor; Ruchjana, Budi Nurani
KUBIK Vol 9 No 1 (2024): KUBIK: Jurnal Publikasi Ilmiah Matematika
Publisher : Jurusan Matematika, Fakultas Sains dan Teknologi, UIN Sunan Gunung Djati Bandung

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.15575/kubik.v9i1.33492

Abstract

Intangible Cultural Heritage (WBTb) determination data in Indonesia is a cultural investment that needs to be preserved. One of the efforts to preserve WBTb is to determine the cultural preservation factors that influence the WBTb determination data in Indonesia. These factors include Percentage of Population Watching Performances/Art Exhibitions (PPWP), Percentage of Population Using Regional Languages (PPURL), and Percentage of Households Using Traditional Products (PHUTP). However, the different cultural wealth in each province results in spatial heterogeneity, resulting in differences in the determination of cultural preservation factors in each province. This determination can be done with the Geographically Weighted Regression (GWR) model. This study aims to apply the GWR model with Fix Gaussian Kernel, Fix Bisquare Kernel, and Fix Tricube Kernel weighting to determine cultural preservation factors in WBTb determination data in Indonesia so that it can be known what cultural preservation factors are most influential in each region. The research findings show the existence of spatial heterogeneity only in the category of WBTb designation data for Performing Arts (PA) and Oral Expression Tradition (OET), as well as different GWR models in each province that reflect differences in cultural preservation factors. Evaluation with the coefficient of determination shows that the GWR model with the Fix Gaussian Kernel weighting function is the best model for the PA category. 
Penerapan Model Seasonal Autoregressive Integrated Moving Average (SARIMA) dalam Peramalan Curah Hujan di Kabupaten Bandung Barat nadhira, valda azka; Ruchjana, Budi Nurani; Parmikanti, Kankan
KUBIK Vol 10 No 1 (2025): IN PRESS
Publisher : Jurusan Matematika, Fakultas Sains dan Teknologi, UIN Sunan Gunung Djati Bandung

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

The expansion of the Kabupaten Bandung, namely Kabupaten Bandung Barat (KBB) is located in hilly and lowland areas. Rainfall in Kabupaten Bandung Barat has an impact on the productivity and performance of key sectors, such as agriculture, plantations and tourism. Low rainfall can lead prolonged dry seasons and result in drought. Conversely, extreme rainfall can also have negative impacts, such as causing soil erosion and potentially affecting the appeal and smooth operation of tourist destinations. Therefore, rainfall forecasting is needed in making appropriate policies, especially regarding the impacts of rainfall changes in KBB. The Seasonal Autoregressive Integrated Moving Average (SARIMA) method is applied in this study to forecast rainfall in KBB. The aims of this research are to estimate the parameters of the SARIMA model using the Maximum Likelihood Estimation (MLE) method and to apply the SARIMA method in forecasting rainfall in KBB, particularly during the December-January-February (DJF) period. The results of the analysis show that the SARIMA model can be applied to forecast rainfall in KBB. The best SARIMA model obtained ARIMA(2,1,0)(0,0,1)3 with a MAPE value 17,80%, which indicates an accurate forecasting criterion. Keywords: SARIMA, MLE, Rainfall.
Co-Authors Ahdian, Muhammad Rhafi Ahmad Fawaid Ridwan Akmaliah, Syifani Al Fataa W Haq Al Madani, Aulia R. Al Madani, Aulia Rahman Alawiyah, Mutik Almeira Tsanawafa Anggraeni A Ani Pertiwi Annisa Alma Yunia Annisa Nur Falah, Annisa Nur Annisafiya, Nadira Arisya Maulina Bowo Asep Kurnia Permadi Asep Kurnia Permadi Asri Yuniar Asrirawan Atika Tresna Arianto Atje Setiawan Abdullah Auliyazhafira, Shabira A. Ayu Indriani Ayun Sri Rahmani Bambang Suhandi Bambang Suhandi Bowo, Arisya Maulina Chotimah, Husnul Dedi Rosadi Delvi Rutania Prama Desiyanti, Armalia Devi Munandar, Devi Devi Yanti, Devi Diah Chaerani Dian Islamiaty Puteri Dianne Amor Kusuma Dicky Muslim Dwipriyoko, Estiyan Eddy Hermawan Emah Suryamah Emah Suryamah, Emah Endang Rusyaman Endang Soeryana Hasbullah Fadhilah, Dila Nur Fajriatus Sholihah Falah, Annisa N. Gumgum Darmawan Gumgum Darmawan Hamim Tsalis Soblia Hardianto A Hendarmawan Hendarmawan Hendarmawan Hendarmawan, Hendarmawan Hera Khoirunnisa Husein Hernadi Bahti I Gede Nyoman Mindra I Gede Nyoman Mindra Jaya I Gede Nyoman Mindra Jaya Ibrahim, Riza Andrian Iin Irianingsih Kaerudin, Nandira Putri Kankan Parmikanti Kartika Sari Khafsah Joebaedi Khoirunnisa Rohadatul Aisy Muslihin Khoirunnisa Rohadatul Aisy Muslihin Kusuma, Dianne Amor Lucy Fitria Dewi Mahrudinda Mahrudinda Maryanto Rompon Mindra, I Gede Nyoman Monika, Putri Muhamad Sobari Muhammad Herlambang Prakasa Yudha Muthalib A nadhira, valda azka Najwa, Sandrina Nauli, Theresia S. Novi - Saputri Nur Hamid NUR HAMID Nurdeni, Nurdeni Nurul Gusriani, Nurul Permana, Pandu Permatasari, Noverlina Putri Pratiwi, Dhanti Aurilia Pratomo, Firdaus Ryan Puteri, Dian Islamiaty Putri Monika Putri Monika Putri, Fariza A. Putri, Salsabila Eka Resa Septiani Pontoh Rizka Pradita Prasetya Rizki Apriva Hidayana Salsabil, Tsuroyya Salsabila Salsabila Setialaksana, Wirawan - Shailla Rustiana Sobari, Muhamad Soetikno, Christophorus Sri Adi Widodo Sri Indra Maiyanti Suhandi, Bambang Sutawanir Darwis Tarigan, Wenny Srimeinda Tegar Bratasena WKM Tilas Notapiri Toni Toharudin Tsanawafa, Almeira Tsuroyya Salsabil Tubagus Robbi Megantara Viona Prisyella Balqis Vivian Wilhelmina Vivian Wilhelmina WKM, Tegar Bratasena Yunia, Annisa Alma Zahra, Nabila Zulfa Hidayah Satria Putri