Claim Missing Document
Check
Articles

Found 1 Documents
Search
Journal : IPTEK The Journal for Technology and Science

Performance Study Of Uncertainty Based Feature Selection Method On Detection Of Chronic Kidney Disease With SVM Classification Qolby, Lailly Syifa'ul; Buliali, Joko Lianto; Saikhu, Ahmad
IPTEK The Journal for Technology and Science Vol 32, No 2 (2021)
Publisher : IPTEK, LPPM, Institut Teknologi Sepuluh Nopember

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.12962/j20882033.v32i2.10483

Abstract

Chronic Kidney Disease (CKD) is a disorder that impairs kidney function. Early signs of CKD patients are very difficult until they lose 25% of their kidney function. Therefore, early detection and effective treatment are needed to reduce the mortality rate of CKD sufferers. In this study, the authors diagnose the CKD dataset using the Support Vector Machine (SVM) classification method to obtain accurate diagnostic results. The authors propose a comparison of the result on applying the feature selec- tion method to get the best feature candidates in improving the classification result. The testing process compares the Symmetrical Uncertainty (SU) and Multivariate Symmetrical Uncertainty (MSU) feature selection method and the SVM method as a classification method. Several experimental scenarios were carried out using the SU and MSU feature selection methods using the CKD dataset. From the results of the tests carried out, it shows that using the MSU feature selection method with 80%: 20% data split produces nine important features with an accuracy value of 0.9, sensi- tivity 0.84, specification 1.0, and when viewed on the ROC graph, the MSU method graph shows the true positive value is higher than the false positive value. So the classification using the MSU feature selection method is better than the SU feature selection method by 90% accuracy