Claim Missing Document
Check
Articles

Found 33 Documents
Search

COMBINED CONTOUR DETECTION AND POINT CLOUD OF RGB-DEPTH IMAGE FOR FOOD VOLUME ESTIMATION Yuita Arum Sari
Jurnal Manajemen Informatika dan Sistem Informasi Vol. 8 No. 1 (2025): MISI Januari 2025
Publisher : LPPM STMIK Lombok

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.36595/misi.v8i1.1408

Abstract

Assessing nutritional consumption entails a procedure that enables nutritionists and dietitians to track the eating habits of patients within healthcare settingsTraditionally, this measurement relies on manual observations by specialists utilizing visual analysis. However, this approach is prone to subjectivity due to the risk of expert fatigue, which can result in inaccuracies. Furthermore, the evaluations may differ among experts based on varying viewpoints. In a decision support system, a more objective analysis is necessary. Previous research has utilized the area captured in a food image to estimate the weight of food on a plate. Nonetheless, this technique still results in numerous prediction errors. To tackle this issue, we propose a novel method to calculate the volume of food from a camera image, which aims to provide a more accurate weight prediction. In this paper, we introduce a new approach that combines contour detection with a point cloud derived from RGB depth images to capture height information. The Root Mean Square Error (RMSE) for height prediction is 1.04 and 1.55 when viewed from the first and second sides, respectively, while the volume prediction reaches an RMSE of 45.08. This suggests that the differences between the predicted and actual values for volume and height are suitable for practical applications.
Sistem Deteksi Kualitas Susu Menggunakan Metode Gray Level Co-occurrence Matrix dan Random Forest Simangunsong, Bryan Nicholas Josephin Hotlando; Utaminingrum, Fitri; Sari, Yuita Arum
Jurnal Pengembangan Teknologi Informasi dan Ilmu Komputer Vol 9 No 8 (2025): Agustus 2025
Publisher : Fakultas Ilmu Komputer (FILKOM), Universitas Brawijaya

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

Penjaminan mutu susu merupakan aspek penting dalam rantai pasok produk susu, terutama untuk memastikan keamanan dan kualitas konsumsi. Namun, di tingkat peternak kecil, implementasinya masih menghadapi tantangan dalam konsistensi dan keterbatasan sumber daya. Metode Total Plate Count (TPC) yang umum digunakan membutuhkan waktu lama dan fasilitas khusus, sehingga tidak efisien untuk pemeriksaan cepat. Penelitian ini bertujuan mengembangkan sistem klasifikasi kualitas susu berbasis citra digital menggunakan metode Gray Level Co-occurrence Matrix (GLCM) dan Random Forest, serta diimplementasikan pada Raspberry Pi 4, sebagai alternatif praktis terhadap metode TPC. GLCM digunakan untuk mengekstraksi lima fitur tekstur dari citra susu, sedangkan Random Forest melakukan klasifikasi ke dalam tiga kelas: Baik, Rusak, dan Rusak Berat. Hasil pengujian menunjukkan bahwa konfigurasi terbaik dicapai dengan 100 pohon keputusan, jarak GLCM 4 piksel, dan sudut 135°, menghasilkan akurasi validasi 84,65%. Pada pengujian akhir terhadap 75 sampel, sistem mencapai akurasi 86,66%, dengan akurasi 100% untuk kelas Baik, serta 80% untuk Rusak dan Rusak Berat. Sistem terbukti efisien dengan rata-rata waktu pelatihan 0,2835 detik dan klasifikasi 0,6651 detik. Hasil ini menunjukkan bahwa sistem mampu melakukan deteksi kualitas susu secara cepat dan akurat, serta berpotensi menjadi alternatif praktis dari metode konvensional.
Perancangan User Experience Aplikasi Perangkat Bergerak Buku Penghubung Daycare Menggunakan Pendekatan Human-Centered Design (Studi Kasus: Daycare Triple-C) Alayasi, Mutia; Widodo, Agus Wahyu; Sari, Yuita Arum
Jurnal Pengembangan Teknologi Informasi dan Ilmu Komputer Vol 9 No 9 (2025): September 2025
Publisher : Fakultas Ilmu Komputer (FILKOM), Universitas Brawijaya

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

Tempat penitipan anak merupakan salah satu alternatif tempat penitipan sementara ketika orang tua bekerja seperti dual-career family. Buku penghubung merupakan sarana untuk saling bertukar informasi terkait pengasuhan anak antara orangtua dan tempat penitipan anak. Daycare Triple-C merupakan taman penitipan anak yang meningkatkan kemitraan dengan orangtua, salah satunya melalui buku penghubung menggunakan Whatsapp dan masih memiliki kekurangan terutama akses informasi stimulasi anak harian. Daycare Triple-C membutuhkan suatu aplikasi yang dapat memfasilitasi pertukaran informasi terkait stimulasi dan pengasuhan anak di tempat penitipan anak dan di rumah. Pendekatan yang digunakan dalam perancangan adalah Human-Centered Design. Keluaran yang dihasilkan adalah hi-fi prototype aplikasi perangkat bergergak buku penghubung untuk pengajar, orangtua, dan kepala. Fitur yang dihasilkan antara lain laporan stimulasi harian, kemandirian anak, dokumentasi, dan infografis pembelajaran, dan laporan akhir setiap semester. Hasil uji usability menggunakan Single Ease Question diperoleh 6,46 di atas target benchmark SEQ sebesar 5,5 yang menunjukkan bahwa aplikasi mudah digunakan. Hasil pengujian menggunakan User Experience Questionnaire memperoleh hasil Excellent pada semua aspek.
A Comparative Analysis of Color Channel-Based Feature Extraction using Machine Learning versus Deep Learning for Food Recognition Sari, Yuita Arum; Nugraha, Dwi Cahya Astria; Adinugroho, Sigit
Jurnal Teknik Informatika (Jutif) Vol. 6 No. 4 (2025): JUTIF Volume 6, Number 4, Agustus 2025
Publisher : Informatika, Universitas Jenderal Soedirman

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.52436/1.jutif.2025.6.4.5001

Abstract

Automated Dietary Assessment Accurate food recognition is a big challenge in computer vision which is critical for developing Automated Dietary assessment and health monitoring systems. The key question it answered was whether traditional machine learning with feature engineering by hand can beat modern deep learning approaches? In this Context, this study serves as a comparative analysis of these two paradigms. The baseline method worked by extracting texture (LBP,GLCM) and color information from different channels of five colors spaces (RGB, HSV, LAB, YUV,YCbCr) followed by feeding these features into multiple classifiers such as Nearest Neighbor(NN), Decision Tree and Naïve Bayes. These were then compared to deep learning models (MobileNet_v2, ResNet18, ResNet50, EfficientNet_B0). The best traditional one can reach an accuracy of 93.33%, using texture features extracted from the UV channel and classified with a NN. Nevertheless, the deep learning models consistently presented higher performance and MobileNet_v2 reached up to 94.9% accuracy without requiring manual feature selection. In this paper, we show that end-to-end deep learning models are more powerful and error robust for food recognition. These results highlight their promise for constructing more effective and scalable real-world applications with less need for intricate, domain-specific feature engineering.
Improving Direct Image Regression for Blood Cell Enumeration with a Fine-Tuned Backbone Adinugroho, Sigit; Sari, Yuita Arum; Utaminingrum, Fitri
Jurnal Teknik Informatika (Jutif) Vol. 6 No. 4 (2025): JUTIF Volume 6, Number 4, Agustus 2025
Publisher : Informatika, Universitas Jenderal Soedirman

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.52436/1.jutif.2025.6.4.5004

Abstract

Complete blood count (CBC) examination provides an important insight for diagnosis or disease treatment. Currently, CBC examination requires complex and expensive devices that limit their deployment in remote area. The development of computer vision based method offers simplification to the process. However, its implementation is limited to the availability of large size labelled dataset. This research aims to develop a direct image regressor that is able to regress directly from image. There are two stages in estimation process. First, the backbone is trained using large dataset available for blood cell classification problem. Then the trained backbone is plugged into the final model by adding a fully connected neural network that acts as regressor. The whole model is then trained using limited whole blood cell count dataset. The evaluation process shows that training the backbone using large size related dataset improve the performance by 50%. This study can be used to create a low-cost blood component evaluation tool, particularly in rural areas where access to advanced laboratory equipment is limited.
Preprocessing of Skin Images and Feature Selection for Early Stage of Melanoma Detection using Color Feature Extraction Sari, Yuita Arum; Hapsani, Anggi Gustiningsih; Adinugroho, Sigit; Hakim, Lukman; Mutrofin, Siti
International Journal of Artificial Intelligence Research Vol 4, No 2 (2020): December 2020
Publisher : Universitas Dharma Wacana

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (3183.967 KB) | DOI: 10.29099/ijair.v4i2.165

Abstract

Preprocessing is an essential part to achieve good segmentation since it affects the feature extraction process. Melanoma have various shapes and their extracted features from image are used for early stage detection. Due to the fact that melanoma is one of dangerous diseases, early detection is required to prevent further phase of cancer from developing. In this paper, we propose a new framework to detect cancer on skin images using color feature extraction and feature selection. The default color space of skin images is RGB, then brightness is added to distinguish the normal and darken area on the skin. After that, average filter and histogram equalization are applied as well for attaining a good color intensities which are capable of determining normal skin from suspicious one. Otsu thresholding is utilized afterwards for melanoma segmentation. There are 147 features extracted from segmented images. Those features are reduced using three types of feature selection algorithms: Linear Discriminant Analysis (LDA), Correlation based Feature Selection (CFS), and Relief. All selected features are classified using k-Nearest Neighbor  (k-NN). Relief is known to be the best feature selection method among others and the optimal k value is 7 with 10-cross validation with accuracy of 0.835 and 0.845, without and with feature selection respectively. The result indicates that the frameworks is applicable for early skin cancer detection.
Pencarian Produk yang Mirip Melalui Automatic Online Annotation dari Web dan Berbasiskan Konten dengan Color Histogram Bin dan Surf Descriptor Adikara, Putra Pandu; Adinugroho, Sigit; Sari, Yuita Arum
Jurnal Teknologi Informasi dan Ilmu Komputer Vol 5 No 1: Februari 2018
Publisher : Fakultas Ilmu Komputer, Universitas Brawijaya

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (607.144 KB) | DOI: 10.25126/jtiik.201851630

Abstract

Banyaknya situs e-commerce memberikan kemudahan bagi pengguna yang ingin mencari dan membeli suatu produk, misalnya membeli makanan, obat, alat elektronik, kebutuhan sehari-hari, dan lain-lain. Pencarian suatu produk terhadap beberapa situs e-commerce akan menjadi sulit karena banyaknya pilihan situs, banyaknya penjual (merchant/seller) yang menjual barang yang sama, dan waktu yang lama karena harus berpindah-pindah situs hingga menemukan produk yang diinginkan. Selain itu dengan adanya teknologi smartphone berkamera, augmented reality, query pencarian bisa jadi hanya berupa citra, namun pencarian produk dengan menggunakan citra pada umumnya tidak diakomodasi di situs e-commerce. Dalam penelitian ini dikembangkan sistem meta search-engine yang menggunakan query berupa citra dan berbasiskan konten untuk menggabungkan hasil pencarian dari beberapa situs e-commerce. Citra query yang tidak diketahui namanya dibangkitkan tag atau kata kuncinya melalui Google reverse image search engine. Kata kunci ini kemudian diberikan ke masing-masing situs e-commerce untuk dilakukan pencarian. Fitur yang digunakan dalam pencocokan query dengan produk adalah fitur tekstual, color histogram bin, dan keberadaan citra objek yang dicari menggunakan SURF descriptor. Fitur-fitur ini digunakan untuk menentukan relevansi terhadap hasil penelusuran. Sistem ini dapat memberikan hasil yang baik dengan precision@20 dan recall hingga 1 dengan rata-rata precision@20 dan recall masing-masing sebesar 0,564 dan 0,608, namun juga bisa gagal dengan precision@20 dan recall sebesar 0. Hasil yang kurang baik ini dikarenakan tag yang dibangkitkan terlalu umum dan situs e-commerce-pun memberikan hasil yang umum juga
Pembentukan Daftar Stopword Goffman Transition Point dengan Pembobotan Emoji pada Analisis Sentimen di Twitter Iqbal, Rizky Maulana; Sari, Yuita Arum; Santoso, Edy
Jurnal Teknologi Informasi dan Ilmu Komputer Vol 9 No 5: Oktober 2022
Publisher : Fakultas Ilmu Komputer, Universitas Brawijaya

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.25126/jtiik.2022954706

Abstract

Analisis sentimen atau opinion mining merupakan proses mengekstrak data teks sehingga didapatkan informasi yang terkandung dalam suatu data. Dalam proses ekstraknya, terdapat tahapan stopword removal untuk menghapus kata-kata tidak penting dengan menggunakan stopword. Stopword telah banyak disediakan dalam digital library dengan berisikan kata-kata tidak penting, tetapi tidak semua kata-kata tersebut tidak penting dalam suatu data atau kasus tertentu. Penelitian ini berfokus pada perbandingan terhadap stopword Tala dengan pembentukan stopword dari data latih menggunakan metode Goffman Transition Point yang merupakan pengembangan dari metode Zipf Law dengan menggunakan metode klasifikasi K-Nearest Neighbour (KNN) serta menambahkan pembobotan emoji dalam proses pembobotannya. Hasil penelitian ini menunjukkan dengan pembentukan stopword menggunakan metode Zipf Law menunjukkan nilai akurasi sebesar 73,6% dan menggunakan pembobotan emoji dengan nilai K yang dipakai metode KNN K = 17 tetapi jika tidak menggunakan pembobotan emoji akurasinya menjadi 72.9%. Formula jarak yang digunakan adalah Cosine distance. Jika dengan menggunakan stopword Tala dengan parameter yang sama menghasilkan akurasi sebesar 73% dengan pembobotan emoji dan 71,9% tanpa pembobotan emoji. Berdasarkan hasil tersebut dapat disimpulkan bahwa pembentukan stopword dan pembobotan emoji dapat meningkatkan akurasi. AbtractSentiment analysis or opinion mining is the process of extracting text data, so that the information contained in the data is obtained. In the extracting process, there are stopword removal steps to remove unnecessary words by using a stopword. Many stopwords have been provided in digital libraries containing unimportant words, but not all of these words are not important in a particular data or case. This study focuses on the comparison of the stopword tala with the formation of a stopword from training data using the Goffman Transition Point which is a development of the Zipf Law method using the K-Nearest Neighbor (KNN) classification method and adding emoji weighting in the weighting process. The results of this study indicate that the formation of a stopword using the zipf law method shows an accuracy value of 73.6% and using emoji weighting with the K value used by the KNN method with K = 17 but if you don’t use emoji weighting the accuracy will be 72.9%. The distance formula used is the cosine distance. Using a stopword Tala with the same parameters produces an accuracy of 73% with emoji-weighted and 71.9% without emoji-weighted. Based on these results it can be concluded that the formation of stopwords and weighting of emojis can improve accuracy.
Pembentukan Daftar Stopword Menggunakan Term Based Random Sampling Pada Analisis Sentimen Dengan Metode Naïve Bayes (Studi Kasus: Kuliah Daring Di Masa Pandemi) Rinandyaswara, Raditya; Sari, Yuita Arum; Furqon, Muhammad Tanzil
Jurnal Teknologi Informasi dan Ilmu Komputer Vol 9 No 4: Agustus 2022
Publisher : Fakultas Ilmu Komputer, Universitas Brawijaya

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.25126/jtiik.2022934707

Abstract

Stopword Removal merupakan bagian dari tahapan preprocessing teks yang bertujuan untuk menghapus kata yang tidak relevan didalam suatu kalimat berdasarkan daftar stopword. Daftar stopword yang biasa digunakan berbentuk digital library yang daftarnya sudah tersedia sebelumnya, namun tidak semua kata-kata yang terdapat didalam digital library merupakan kata yang tidak relevan dalam suatu data tertentu. Penelitian ini menggunakan daftar stopword yang dibentuk dengan algoritme Term Based Random Sampling. Dalam Term Based Random Sampling terdapat 3 parameter yaitu Y untuk jumlah perulangan pengambilan kata random, X untuk jumlah pengambilan bobot terendah dalam perulangan Y, dan L sebagai persentase jumlah stopword yang ingin digunakan. Sehingga penelitian ini ditujukan untuk mencari kombinasi terbaik dari 3 parameter tersebut serta membandingkan stopword Term Based Random Sampling dengan stopword Tala dan tanpa proses stopword removal dalam analisis sentimen tweet mengenai kuliah daring dengan menggunakan metode Naïve Bayes. Hasil evaluasi dengan stopword Term Based Random Sampling mendapatkan akurasi tertinggi dengan X, Y, L sebesar 10, 10, 40 dengan macroaverage accuracy sebesar 0,758, macroaverage precision sebesar 0,658, macroaverage recall sebesar 0,636, dan macroaverage f-measure sebesar 0,647. Berdasarkan hasil pengujian disimpulkan bahwa semakin besar X, Y, L maka semakin tinggi kemungkinannya untuk hasil evaluasi turun. Hasil pengujian membuktikan bahwa Term Based Random Sampling berhasil mendapatkan akurasi lebih tinggi dibandingkan dengan stopword Tala maupun tanpa menggunakan proses stopword removal. AbstractStopword Removal is part of the text preprocessing stage which aims to remove irrelevant words in a sentence based on the stopword list. The stopword list that is commonly used is in the form of a digital library whose list is already available, but not all words contained in the digital library are irrelevant words in certain data. This study uses a stopword list formed by the Term Based Random Sampling algorithm. In Term Based Random Sampling, there are 3 parameters, namely Y for the number of random word retrieval repetitions, X for the lowest number of weights in Y repetitions, and L as the percentage of the number of stopwords you want to use. So this research is aimed at finding the best combination of these 3 parameters and comparing the Term Based Random Sampling stopword with the stopword tuning and without the stopword removal process in the analysis of tweet sentiment regarding online lectures using the Naïve Bayes method. The results of the evaluation with the Term Based Random Sampling stopword get the highest accuracy with X, Y, L of 10, 10, 40 with a macroaverage accuracy of 0.758, a macroaverage precision of 0.658, a macroaverage recall of 0.636, and a macroaverage f-measure of 0.647. Based on the test results, it is concluded that the greater the X, Y, L, the higher the probability that the evaluation results will decrease. The test results prove that Term Based Random Sampling is successful in obtaining higher accuracy than stopword tuning or without using the stopword removal process.
Analisis Sentimen Kebijakan New Normal dengan Menggunakan Automated Lexicon Senti N-Gram Siregar, Rifki Akbar; Sari, Yuita Arum; Indriati, Indriati
Jurnal Teknologi Informasi dan Ilmu Komputer Vol 10 No 1: Februari 2023
Publisher : Fakultas Ilmu Komputer, Universitas Brawijaya

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.25126/jtiik.2023105006

Abstract

Dalam menghadapi pandemi COVID-19 ini, pemerintah Indonesia mengeluarkan beberapa kebijakan di antaranya adalah Pembatasan Sosial Berskala Besar, dan New normal. Kebijakan New normal ini kemudian menjadi ramai diperbincangkan oleh masyarakat. Analisis sentimen dari opini yang beredar terkait isu tersebut dapat dilakukan sehingga pemerintah dapat mengevaluasi kebijakan tersebut. Dalam penelitian ini diusulkan menggunakan Lexicon Senti-N-Gram untuk analisis sentimen dengan tujuan untuk mengetahui pengaruh Lexicon Senti-N-Gram pada analisis sentimen Bahasa Indonesia. Adapun penelitian ini menggunakan data sebanyak 350 data tweet yang terbagi menjadi 229 tweet kelas positif dan 121 tweet kelas negatif. Hasil evaluasi yang diperoleh dengan menggunakan data dengan stemming lebih tinggi dibandingkan dengan data tanpa stemming. Hasil pengujian kinerja sistem terhadap lexicon Senti-N-Gram mendapatkan nilai accuracy sebesar 63,42%, precision sebesar 77%, recall sebesar 62,88%, dan f-measure sebesar 69,23% dengan nilai rata-rata kappa antar Annotator sebesar 0.5395 untuk data yang melalui proses stemming.  Berdasarkan hasil pengujian yang telah diperoleh dapat disimpulkan bahwa proses stemming serta proses translasi kata satu per satu yang dilakukan dapat memengaruhi kata berdasarkan konteksnya. AbstractIn dealing with the COVID-19 pandemic, the Indonesian government has issued several policies, including Large-Scale Social Restrictions and New normal. The New normal policy then became widely discussed by the public. Sentiment analysis of the opinions circulating on this issue can be carried out so that the government can evaluate the policy. In this study, it is proposed to use the Lexicon Senti-N-Gram for sentiment analysis in order to determine the effect of the Lexicon Senti-N-Gram on Indonesian sentiment analysis. The research used 350 tweets, which were divided into 229 positive class tweets and 121 negative class tweets. The evaluation results obtained using stemming data were higher than those without stemming. The results of the system performance test of the Lexicon Senti-N-Gram obtained an accuracy value of 63.42%, 77% precision, 62.88% recall, and 69.23% f-measure with an average kappa value between Annotators of 0.5395 for data that goes through the stemming process. Based on the test results that have been obtained, it can be concluded that the stemming process and the process of translating words one by one can affect words based on their context.