Claim Missing Document
Check
Articles

Found 33 Documents
Search

Implementasi Metode Longest Common Subsequences untuk Perbaikan Kata pada Kasus Analisis Sentimen Opini Pembelajaran Daring di Media Sosial Twitter Pranata, Alfisyar Jefry; Sari, Yuita Arum; Santoso, Edy
Jurnal Teknologi Informasi dan Ilmu Komputer Vol 9 No 1: Februari 2022
Publisher : Fakultas Ilmu Komputer, Universitas Brawijaya

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.25126/jtiik.2022915611

Abstract

Coronavirus merupakan salah satu parasit yang menyerang sistem pernapasan manusia. Peningkatan kasus coronavirus berlangsung sangat cepat dan menyebar ke berbagai negara. Oleh karena itu, World Health Organization (WHO) menetapkan Coronavirus sebagai pandemi. Hal ini mengakibatkan seluruh kegiatan yang sebelumnya tatap muka atau luar jaringan (luring) menjadi dalam jaringan (daring), termasuk kegiatan belajar mengajar. Dengan ditetapkannya pembelajaran secara daring menyebabkan adanya opini yang bersifat pro dan kontra dari berbagai kalangan masyarakat. Opini tersebut akan digunakan dalam penelitian ini dan akan diolah terlebih dahulu dalam tahap preprocessing. Metode yang digunakan dalam penelitian ini adalah Longest Common Subsequences (LCS) dan Support Vector Machine (SVM)  dengan data sebesar 500 yang terbagi menjadi 250 data berlabel positif dan 250 data berlabel negatif. Dari 500 data tersebut dibagi menjadi 450 data untuk data latih dan 50 data untuk data uji. Dengan menggunakan metode Longest Common Subsequences untuk perbaikan kata dan metode Support Vector Machine untuk klasifikasi dengan nilai parameter terbaik yaitu learning rate (γ) = 0,0001, lambda (λ) = 0,1, complexity (C) = 0,001, epsilon (ϵ) = 0,0001 dan iterasi maksimum = 50 dapat menghasilkan nilai rata-rata hasil evaluasi yaitu precision = 0,5653, recall = 0,948, f-measure = 0,7047 dan accuracy = 0,598. Hasil pengujian tersebut mununjukkan bahwa dengan menambahkan metode Longest Common Subsequences untuk perbaikan kata dapat meningkatkan tingkat akurasi yang sebelumnya hanya 0,59 menjadi 0,598. Abstract Coronavirus is a parasite that attacks the human respiratory system. The increase incases coronavirus took place very fast and spread to various countries. Therefore, the World Health Organization (WHO) has designated Coronavirus as a pandemic. This results in all activities that were previously face-to-face or offline (offline) becoming online (online), including teaching and learning activities. With the establishment of online learning, there are pro and contra opinions from various circles of society. This opinion will be used in this research and will be processed first in the stage preprocessing. The method used in this research is Longest Common Subsequences (LCS) and Support Vector Machine (SVM) with 500 data divided into 250 data labeled positive and 250 data labeled negative. Of the 500 data is divided into 450 data for training data and 50 data for test data. By using the method Longest Common Subsequences for word improvement and the method Support Vector Machine for classification with the best parameter values, namely learning rate (γ) = 0.0001, lambda (λ) = 0.1, complexity (C) = 0.001, epsilon (ϵ ) = 0.0001 and the maximum iteration = 50 can produce the average value of the evaluation results, namely precision = 0.5653, recall = 0.948, f-measure = 0.7047 and   accuracy = 0.598. The test results show that by adding method of Longest Common Subsequences for word improvement, it can increase the level of accuracy which was previously only 0.59 to 0.598.
Analisis Sentimen terhadap Kebijakan Kuliah Daring Selama Pandemi Menggunakan Pendekatan Lexicon Based Features dan Support Vector Machine Oktaviana, Natasya Eldha; Sari, Yuita Arum; Indriati, Indriati
Jurnal Teknologi Informasi dan Ilmu Komputer Vol 9 No 2: April 2022
Publisher : Fakultas Ilmu Komputer, Universitas Brawijaya

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.25126/jtiik.2022925625

Abstract

Adanya virus baru yaitu COVID-19 atau SARS-CoV-2 yang berasal dari Wuhan, China pada awal tahun 2020 telah menggemparkan seluruh warga dunia salah satunya Indonesia dan memiliki tingkat penularan yang tinggi. Sehingga untuk meminimalisir penyebaran COVID-19, pemerintah Indonesia menetapkan salah satu kebijakan dalam dunia pendidikan yaitu pembelajaran/perkuliah online. Kebijakan tersebut mengakibatkan seluruh penyebaran informasi berubah menjadi online dan memberikan dampak yang luas bagi keberlanjutan pendidikan di Indonesia. Hal tersebut menimbulkan kontroversi pada kalangan masyarakat dan banyak yang akhirnya beropini pada media sosial, salah satunya Twitter. Analisis sentimen berguna untuk mengetahui ketepatan komputasi sistem dalam mengenali pembicaraan pada Twitter mengenai kebijakan pembelajaran online cenderung bersentimen negatif atau positif dengan menggunakan metode Support Vector Machine dan Lexicon Based Features. Penggunaan Lexicon Based Features berpengaruh terhadap objek penelitian yang menghasilkan nilai accuracy 0,6, nilai precision 0,56, nilai recall 0,75, dan fmeasure 0,64 dengan parameter optimal dalam mencapai konvergensi yaitu ???? (Lambda) = 0,7, nilai parameter ???? (gamma) = 0,0001, nilai parameter ???? (Kompleksitas) = 0,0001, iterasi = 50, dan ???? (Epsilon) = 0,00000001. Hal tersebut menunjukkan bahwa metode yang digunakan pada penelitian ini dapat mengenali pembicaraan data komentar pada Twitter karena dibuktikan dengan nilai accuracy yang cukup tinggi.AbstractThe existence of a new virus, namely COVID-19 or SARS-CoV-2, that come from Wuhan, China, in early 2020, has shocked all citizens of the world, including Indonesia, and has a high transmission rate. So to minimize the spread of COVID-19, the Indonesian government has set one policy in online learning/lectures. This policy resulted in all information dissemination being online and had a broad impact on education in Indonesia. This policy caused controversy among the public, and many ended up giving opinions on social media, one of which was Twitter. Sentiment analysis is useful for determining the timeliness of system computing in discussions on Twitter regarding online learning policies that tend to have negative or positive sentiments using the Support Vector Machine and Lexicon Based Features methods. The use of Lexicon Based Features affects the object of research which produces an accuracy value of 0.6, a precision value of 0.56, a recall value of 0.75, and a size of 0.64 with the optimal parameter in achieving convergence, namely (Lambda) = 0.7, the parameter value (gamma) = 0.0001, the parameter value (Complexity) = 0.0001, iterations = 50, and (Epsilon) = 0.00000001. This evaluation value shows that the method used in this study can recognize the conversation of comment data on Twitter because a fairly high accuracy value evidences it.
SPERM ABNORMALITY CLASSIFICATION USING MULTI-PURPOSE IMAGE EMBEDDING AND CLASSICAL MACHINE LEARNING Adinugroho, Sigit; Sari, Yuita Arum; Kurniawan, Wijaya; Arwan, Achmad
JIKO (Jurnal Informatika dan Komputer) Vol 7, No 3 (2024)
Publisher : Universitas Khairun

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.33387/jiko.v7i3.8938

Abstract

Since sperm cells have big impact for human welfare in terms of reproduction, there are many studies have been done. In this case, we are attracted to enrich the method in determining the morphological properties of them using machine learning. Most study about it is done using 2-steps action that are feature extraction which is continued by classification. In our work, we aimed to lower the complexity by using image embedding as a general-purpose feature extractor that requires no training. For feature extraction using image, it is found that RGB has better performance compared to grayscale if we want to use Support Vector Machine (SVM). Meanwhile, when a comparation is done between SVM, random forest, Multi-Layer Perceptron (MLP), Naïve Bayes, and k-Nearest Neighbour (kNN) for classification process, MLP shows the best performance among them which is around 85%. Moreover, our proposed method has low complexity indicated by the training time around one and a quarter minute s for the most accurate method, compared to hours of training time in similar methods.