Claim Missing Document
Check
Articles

Found 9 Documents
Search
Journal : MATHEdunesa

Profil Siswa SMA dalam Memecahkan Masalah Matematika Ditinjau Dari Gaya Berfikir Utari Nur Masita Mardiyanti; Rini Setianingsih
MATHEdunesa Vol 11 No 1 (2022): Jurnal Mathedunesa Volume 11 Nomor 1 Tahun 2022
Publisher : Program Studi S1 Matematika UNESA

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (778.802 KB) | DOI: 10.26740/mathedunesa.v11n1.p268-277

Abstract

Setiap siswa memiliki kemampuan yang berbeda dalam menyelesaikan suatu permasalahan, dalam hal ini adalah permasalahan Matematika. Perbedaan tersebut disebabkan oleh gaya berpikir yang dimiliki oleh setiap siswa. Gaya berpikir ini berpengaruh pada cara siswa dalam memproses suatu permasalahan, mulai dari memahami, merencanakan, melaksanakan, dan memeriksa kembali. Untuk itu, dilakukan penelitian yang bertujuan untuk mengelompokkan siswa berdasarkan gaya berpikirnya dan mengidentifikasi karakteristik langkah-langkah dalam menyelesaikan permasalahan matematika. Metode penelitian dilakukan dengan 4 pedekatan, yakni: angket, TKM, TPM, dan wawancara. Dari hasil penelitian didapatkan bahwa gaya berpikir siswa dalam menyelesaikan permasalah matematika yakni: (1) tipe sekuensial konkret (SK) menuliskan informasi dari soal secara lengkap, langkah penyelesaian terurut dan memvisualisasikan; (2) tipe sekuensial Abstrak (SA) menuliskan informasi dari soal secara lengkap, terurut dan tidak mevisualisasikan; (3) tipe acak konkret (AK) tidak menuliskan informasi dari soal, langkah penyelesaian kurang runtut, acak, dan memvisualisasikan; (4) tipe acak konkret (AA) menuliskan informasi dari soal secara acak, langkah penyelesaian kurang runtut, dan tidak memvisualisasikan. Setelah dikelompokan, didapatkan bahwa tipe SK dan AA 27,5%, tipe SA 20 %, tipe AK 25%. Kata Kunci: Siswa SMA, gaya berpikir, permasalahan matematika.
KEMAMPUAN LITERASI STATISTIS SISWA SMA DITINJAU DARI GAYA KOGNITIF SISTEMATIS DAN INTUITIF Luluk Mahmudah; Rini Setianingsih
MATHEdunesa Vol 11 No 1 (2022): Jurnal Mathedunesa Volume 11 Nomor 1 Tahun 2022
Publisher : Program Studi S1 Matematika UNESA

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (569.729 KB) | DOI: 10.26740/mathedunesa.v11n1.p255-267

Abstract

Kemampuan seseorang dalam memahami, menginterpretasi, mengevaluasi, dan mengomunikasikan data atau statistik disebut sebagai kemampuan literasi statistis yang dapat dipengaruhi oleh gaya kognitif sistematis dan intuitif seseorang dalam memperoleh dan memproses informasi di dalam otaknya. Tujuan penelitian ini untuk mendeskripsikan kemampuan literasi statistis siswa SMA yang memiliki gaya kognitif sistematis dan siswa SMA yang memiliki gaya kognitif intuitif dengan subjek penelitian siswa kelas XII-IPA masing-masing satu siswa pada tiap gaya kognitif. Jenis penelitian ini adalah deskriptif kualitatif dengan instrumen utama penelitian yaitu peneliti sendiri dan instrumen pendukung berupa tes gaya kognitif, tes literasi statistis, dan pedoman wawancara. Hasil penelitian ini menunjukkan bahwa kemampuan literasi statistis siswa SMA yang memiliki gaya kognitif sistematis berada pada kategori baik karena mampu memenuhi 3 (tiga) dari 4 (empat) indikator literasi statistis yang telah ditentukan yaitu siswa mampu memahami data, siswa mampu menginterpretasi data, dan siswa mampu mengomunikasikan data, sedangkan siswa SMA yang memiliki gaya kognitif intuitif berada pada kategori sangat baik karena siswa mampu memenuhi semua indikator literasi statistis yang telah ditentukan yaitu siswa mampu memahami data, siswa mampu menginterpretasi data, siswa mampu mengevaluasi data, dan siswa mampu mengomunikasikan data. Oleh karena itu, guru diharapkan dapat memberikan soal-soal statistika yang memuat informasi dengan konteks nyata kehidupan sehari-hari beserta penjelasan grafik, tabel, atau diagram namun dengan tingkat kesulitan yang lebih tinggi agar siswa dapat meningkatkan kemampuan literasi statistisnya, serta guru tidak membatasi bagaimana siswa menjawab supaya siswa dapat bekerja secara sistematis dan intuitif sesuai gaya kognitifnya masing-masing.
EXPLORING ETHNOMATHEMATICS ON THE FISH BREEDING ACTIVITIES IN TAMBAK BULAK, SIDOARJO Emillia Ardhiana Wulandari; Rini Setianingsih
MATHEdunesa Vol 11 No 1 (2022): Jurnal Mathedunesa Volume 11 Nomor 1 Tahun 2022
Publisher : Program Studi S1 Matematika UNESA

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (606.019 KB) | DOI: 10.26740/mathedunesa.v11n1.p169-180

Abstract

Ethnomathematics is a mathematical idea that grows in a culture. Ethnomathematics is an important idea to know the role of mathematics in everyday life. Through ethnomathematics, learning mathematics can be taught in close situations with students. Thus, students will be easier and interested in understanding mathematical concepts at school. Therefore, this study was conducted to identify the ethnomathematical form that exist in fish breeders activities in Tambak Bulak Sidoarjo which focuses on six fundamental activities in a culture. This research is a qualitative research with an ethnographic approach. Data obtained from participant observation and interviews with fish breeders from the Tambak Bulak Sidoarjo community with data collection instruments are observation sheets, interview guidelines, and research note sheets. Furthermore, the data will be analyzed using qualitative data analysis techniques. The results showed that, there were ethnomathematical form in fish breeders activities in Tambak Bulak Sidoarjo related to the concept of numbers, cartesian coordinate system, length, direct proportion, inverse proportion, plane figures namely rectangles, trapezoids, circles, rhombuses, triangles, and pentagons, also the math logic concepts. Thus, fish breeders activities can be used as a bridge to teach mathematical concepts in schools with the hope that students can more easily understand the mathematical concepts. Keyword: ethnomathematics, fish breeding, Tambak Bulak Sidoarjo.
Eksplorasi Etnomatematika Pada Peninggalan Sejarah Dan Budaya Sumenep Alvianto, Achmad Luthfi; Setianingsih, Rini
MATHEdunesa Vol. 13 No. 1 (2024): Jurnal Mathedunesa Volume 13 Nomor 1 Tahun 2024
Publisher : Universitas Negeri Surabaya

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.26740/mathedunesa.v13n1.p234-254

Abstract

In a culture that is spread across various societies, mathematical concepts are applied in it. The mathematical concept contained in this folk culture is called ethnomathematics. This study aims to find and describe mathematical concepts spread in the historical and cultural heritage of the Sumenep district community. This research is a qualitative descriptive study using an ethnographic approach. The research data were obtained from related literature, observations, interviews, documentation, and field notes. The informants in this study were a historian, a tourism ambassador, a royal family, three market traders, a Tong-tong activist, a traditional dancer, a batik entrepreneur, and a keris craftsman. The results showed that in daily activities and the culture in the Sumenep district, mathematical concepts are used by the people of Sumenep district. The Sumenep people use geometric concepts, namely straight lines, curved lines, parallels, triangles, squares, rhombuses, trapezoids, circles, cubes, beams, prisms, pyramids, cones, balls, and tubes in building designs and traditional games. The community also uses the concept of geometric transformation, namely congruence, translation, dilation, rotation, and reflection on the batik motifs they make. Also found the concept of set and comparison; these concepts are used in traditional Sumenep dance. With the study of mathematics in this culture, mathematics learning becomes more varied and contextual so that students will more easily understand abstract mathematical concepts.
Proses Matematisasi Peserta Didik dalam Menyelesaikan Masalah pada Topik Aljabar di Kelas VII SMP Widianti, Mila; Setianingsih, Rini
MATHEdunesa Vol. 13 No. 2 (2024): Jurnal Mathedunesa Volume 13 Nomor 2 Tahun 2024
Publisher : Universitas Negeri Surabaya

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.26740/mathedunesa.v13n2.p615-629

Abstract

Abstrak Tidak semua permasalahan matematika dapat dianggap sebagai masalah. Sebuah soal matematika baru hanya dianggap sebagai masalah jika tidak bisa dipecahkan secara langsung dan memerlukan keterampilan khusus untuk menemukan solusinya. Oleh karena itu, keterampilan pemecahan masalah menjadi salah satu kompetensi yang sangat penting yang harus dimiliki dan dikembangkan oleh peserta didik. Dalam pemecahan masalah melibatkan keterampilan seseorang untuk memperoleh dan mengaplikasikan pengetahuan baru atau pengetahuan yang sudah dimiliki untuk menemukan pendekatan atau cara yang baru untuk menangani dan menyelesaikan masalah yang dihadapi. Dalam memecahkan masalah matematika, diperlukan suatu proses yang disebut matematisasi, yaitu suatu proses untuk mengubah suatu fenomena menjadi bentuk matematika. Tujuan dari penelitian ini adalah untuk menjelaskan proses matematisasi yang dilakukan oleh peserta didik saat mereka menyelesaikan masalah dalam topik aljabar. Penelitian ini merupakan penelitian deskriptif dengan pendekatan kualitatif. Terdapat tiga subjek penelitian yang dipilih dari hasil analisis tes kemampuan matematika terhadap 27 peserta didik kelas VII A di salah satu SMP di Surabaya. Setiap subjek yang dipilih mewakili kategori kemampuan matematika tinggi, sedang, dan rendah berdasarkan hasil tes kemampuan matematika yang telah dilakukan. Metode pengumpulan data yang diterapkan dalam penelitian ini adalah melalui tes matematisasi yang terdiri dari dua soal esai pada topik aljabar, serta melalui wawancara. Data yang terkumpul kemudian dianalisis dengan menggunakan indikator matematisasi De Lange. Hasil penelitian menunjukkan bahwa peserta didik dengan kemampuan matematisasi tinggi memenuhi semua indikator matematisasi horizontal, tetapi kurang memenuhi satu indikator dalam matematisasi vertikal, yaitu penggunaan berbagai representasi matematis berbeda untuk menyelesaikan soal. Peserta didik dengan kategori sedang mampu memenuhi keseluruhan indikator matematisasi horizontal dan kurang memenuhi satu indikator pada matematisasi vertikal, yaitu menggunakan berbagai representasi matematis yang berbeda untuk menyelesaikan soal. Pada tahap matematisasi vertikal, peserta didik dengan kategori sedang melakukan revisi hasil pekerjaan karena kesalahan yang disebabkan oleh kurang pemahaman terhadap masalah yang disajikan. Sementara itu, peserta didik dengan kategori kemampuan matematisasi rendah tidak mampu menyelesaikan masalah secara mandiri dan tidak memenuhi seluruh indikator matematisasi. Oleh karena itu, penting bagi guru untuk memberikan perhatian khusus pada peserta didik dengan kemampuan matematika rendah dan mengintegrasikan lebih banyak masalah kontekstual dalam pembelajaran untuk membiasakan peserta didik dalam merencanakan langkah-langkah untuk menyelesaikan masalah. Kata Kunci: Matematisasi horizontal, matematisasi vertikal, aljabar Abstract Not all mathematical problems can be considered as challenges. A mathematical problem is only regarded as a challenge if it cannot be solved directly and requires specific skills to find its solution. Therefore, problem-solving skills become a crucial competency that students must possess and develop. In problem-solving, individuals engage in acquiring and applying new knowledge or utilizing existing knowledge to discover new approaches or methods for addressing and resolving encountered problems. Solving mathematical problems involves a process known as mathematization, which is the process of transforming a phenomenon into mathematical form. The objective of this research is to elucidate the mathematization process undertaken by students when solving problems in the topic of algebra. This study adopts a descriptive research design with a qualitative approach. Three research subjects were chosen based on the analysis of mathematical ability tests conducted on 27 seventh-grade students in one of the junior high schools in Surabaya. Each selected subject represents a high, moderate, and low level of mathematical ability based on the results of the mathematical ability test. The data collection method employed in this research includes mathematization tests consisting of two essay questions on the topic of algebra, supplemented by interviews. The gathered data are then analyzed using the De Lange mathematization indicators. The research findings reveal that students with high mathematization abilities fulfill all horizontal mathematization indicators but fall short on one vertical indicator, which is the use of various mathematical representations to solve problems. Students with moderate abilities manage to meet all horizontal mathematization indicators but lack fulfillment in one vertical indicator, namely using diverse mathematical representations to solve problems. In the vertical mathematization stage, students with moderate abilities revise their work due to errors caused by a lack of understanding of the presented problem. Meanwhile, students with low mathematization abilities cannot independently solve problems and do not meet all mathematization indicators. Hence, it is crucial for teachers to pay special attention to students with low mathematical abilities and incorporate more contextual problems into learning to familiarize students with planning steps to solve problems. Keywords: Horizontal mathematization, vertical mathematization, algebra
Kemampuan Komunikasi Matematis Siswa dalam Menyelesaikan Soal Numerasi Ditinjau dari Self-Efficacy Putri, Aline Fatika; Setianingsih, Rini
MATHEdunesa Vol. 13 No. 3 (2024): Jurnal Mathedunesa Volume 13 Nomor 3 Tahun 2024
Publisher : Universitas Negeri Surabaya

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.26740/mathedunesa.v13n3.p836-845

Abstract

One goal of mathematical learning in an independent curriculum is to communicate ideas with symbols, tables, diagrams, or other media to clarify a situation or problem, and present a situation into a mathematical symbol or model (communication and mathematical representation). Students must have good and clear communication skills. Communication is not only done by question and answer or by discussion between students and other students, communication can also be done by answering math problems. Communication, self-confidence, and mathematics are considered mutually influential. This study is a descriptive study with a qualitative approach aimed at (1) describing students' mathematical communication ability in solving data material numeration problems and the uncertainties reviewed by high self-efficacy (2) to describe students' mathematical communication ability in resolving problems. The results of this study are (1) The mathematical communication ability of students to solve numeration problems with high self-efficacy was stated to be accurate, smooth but incomplete. Meanwhile, students' verbal communication skills in solving numeration problems with high self-efficacy were stated to be accurate, complete and smooth (2) The mathematical communication ability of students to solve numeration problems with low self-efficacy is stated to be inaccurate, incomplete and not smooth, as there are still scribbles and inaccuracies in solving problems. For verbal mathematical communication skills students solve numeration problems with low self-efficacy are also stated to be inaccurate, incomplete, and not smooth. Students can't solve both writing and verbal problems at all.
Kemampuan Berpikir Komputasional Peserta Didik dengan Kecerdasan Logis Matematis Tinggi dan Sedang dalam Menyelesaikan Bebras Task Putri, Kharisma Dwisinta; Setianingsih, Rini
MATHEdunesa Vol. 14 No. 1 (2025): Jurnal Mathedunesa Volume 14 Nomor 1 Tahun 2025
Publisher : Universitas Negeri Surabaya

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.26740/mathedunesa.v14n1.p118-128

Abstract

Indonesia's Minister of Education and Culture determined Merdeka Belajar Kampus Merdeka Curriculum) in 2019. Computational thinking is one of the skills that supports curriculum development in science and technology. Bebras tasks can be used to practice computational thinking. The research aims to describe the computational thinking abilities of students with high and medium mathematical and logical intelligence in completing bebras tasks. The research method is qualitative descriptive. Instruments in research are logico-mathematical intelligence tests, mathematical ability tests, computational thinking tasks, and interview guides—data analysis through data condensation, data presentation, and conclusions. The subjects in the research are students in class XI SMA Negeri 4 Kediri, one student with high and medium mathematical logical intelligence. The research results show that students with high logico-mathematical intelligence can answer entirely and in detail because they always give reasons that support indicators of problem decomposition, pattern recognition, algorithmic thinking, abstraction, and generalization. Meanwhile, students with medium logico-mathematical intelligence can answer well but do not complete the problem decomposition indicator and have less understanding of questions, so there are errors in calculations on the pattern recognition indicator. Based on the research results, the researcher hopes educators introduce Bebras tasks in mathematics learning to improve computational thinking.
Eksplorasi Etnomatematika pada Industri Gerabah di Desa Rendeng, Kecamatan Malo, Kabupaten Bojonegoro Salsabiila, Fachru Annisa; Setianingsih, Rini
MATHEdunesa Vol. 14 No. 2 (2025): Jurnal Mathedunesa Volume 14 Nomor 2 Tahun 2025
Publisher : Universitas Negeri Surabaya

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.26740/mathedunesa.v14n2.p443-459

Abstract

Culture and mathematics have a close relationship and cannot be separated. One way to connect mathematics learning with everyday life is through the concept of ethnomathematics. Ethnomathematics is an important concept for understanding the role of mathematics in everyday life. By using an ethnomathematics approach, mathematics learning can be delivered contextually according to students' daily lives. Cultural involvement in understanding mathematics through ethnomathematics allows learning to be more relevant and meaningful for students. Therefore, this research was conducted to identify ethnomathematics and ethnomodelling activities found in pottery burning activities in Rendeng Village, Malo District, Bojonegoro Regency. This research is qualitative research with an ethnographic approach. The instruments used in this research were interview guidelines and observation sheets. The subjects in this research were pottery craftsmen in Rendeng Village. Next, the data will be analyzed by condensing data, presenting data, and drawing conclusions. The results of the research show that there are ethnomathematics activities in the pottery firing process, namely counting activities, location determining activities, measuring activities, designing activities, playing activities and explaining activities. There is also ethnomodeling in how to calculate combinations of pottery that can be fired simultaneously to achieve optimal results. The results of this approach are calculations using the simplex method which can be used by teachers as learning material in schools as well as calculations using Excel Solver which can be used by pottery craftsmen in Rendeng Village as a reference for determining the right combination of pottery to achieve optimal results in the pottery firing process. . Thus, the pottery burning activity in Rendeng Village can be a bridge for teachers to teach mathematical concepts at school. The hope is that through this activity, students can more easily understand the mathematical concepts taught in class.
Penalaran Aljabar Siswa Sekolah Menengah Pertama (SMP) dalam Menyelesaikan Soal Open-ended Ditinjau dari Adversity Quotient Dewi, Silvia Kumala; Setianingsih, Rini
MATHEdunesa Vol. 14 No. 2 (2025): Jurnal Mathedunesa Volume 14 Nomor 2 Tahun 2025
Publisher : Universitas Negeri Surabaya

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.26740/mathedunesa.v14n2.p370-387

Abstract

Algebraic reasoning is the process of finding patterns from mathematical problems, recognizing relationships between quantities, and forming generalizations. Algebraic reasoning is important to develop to build deeper and more complex mathematical conceptual development. One step that can be taken is by giving open-ended questions. Adversity quotient (AQ) influences students in responding to problems. This research is a qualitative descriptive study which aims to describe the algebraic reasoning of students with climber, camper and quitter AQ types in solving open-ended problems. The instrument for determining research subjects is the Adveristy Response Profile (ARP) questionnaire, while the instruments for collecting data are algebraic reasoning tasks and interview guides. Data analysis is carried out through data condensation, data presentation, and drawing conclusions. The subjects in this research were class VIII students at SMPN 3 Surabaya consisting of one student from each type of AQ climber, camper, and quitter. The results of the research show that in the pattern search indicator, climber and camper students collect existing information and find pattern regularities. Quitter students make calculation errors so they do not find pattern regularity. In the pattern recognition indicator, climber and camper students tested the truth of the patterns they had previously obtained, while quitter students did not carry out a truth test because in the previous activity they did not find pattern. In the generalization indicator, climber and camper students make general rules in precise mathematical form. Quitter students do not write general rules on answer sheets and cannot provide explanations during interviews.