Claim Missing Document
Check
Articles

Found 3 Documents
Search
Journal : Indonesian Journal of Electrical Engineering and Computer Science

Indonesian sign language recognition using kinect and dynamic time warping Wijayanti Nurul Khotimah; Nanik Suciati; Tiara Anggita
Indonesian Journal of Electrical Engineering and Computer Science Vol 15, No 1: July 2019
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijeecs.v15.i1.pp495-503

Abstract

Sign Language Recognition System (SLRS) is a system to recognise sign language and then translate them into text. This system can be developed by using a sensor-based technique. Some studies have implemented various feature extraction and classification methods to recognise sign language in the different country. However, their systems were user dependent (the accuracy was high when the trained and the tested user were the same people, but it was getting worse when the tested user was different to the trained user). Therefore in this study, we proposed a feature extraction method which is invariant to a user. We used the distance between two users’ skeleton instead of using the users’ skeleton positions because the skeleton distance is independent to the user posture. Finally, forty-five features were extracted in this proposed method. Further, we classified the features by using a classification method that is suitable with sign language gestures characteristic (time-dependent sequence data). The classification method is Dynamic Time Wrapping. For the experiment, we used twenty Indonesian sign languages from different semantic groups (greetings, questions, pronouns, places, family and others) and different gesture characteristic (static gesture and dynamic gesture). Then the system was tested by a different user with the user who did the training. The result was promising, this proposed method produced high accuracy, reach 91% which shows that this proposed method is user independent.
Microarray classification using genetic algorithm and latin hypercube sampling Awangditama, Bangun Rizki; Suciati, Nanik
Indonesian Journal of Electrical Engineering and Computer Science Vol 35, No 3: September 2024
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijeecs.v35.i3.pp1976-1985

Abstract

Cancer, the second leading cause of global death, requires advanced diagnostic technology. Microarray gene expression technology plays an important role in comprehensively analyzing the genetic aspects of cancer. However, challenges such as high-dimensional attributes, limited samples, and varying gene presence rates hinder the accurate classification of microarray data. This study proposes a model that uses latin hypercube sampling (LHS) in genetic algorithms (GA) for Feature Selection in microarray data classification. LHS makes the chromosome samples in the initial population of GAs representative and diverse. The study used three microarray datasets with different numbers of features and classes. The results reveal that first, the use of GA alone tends to limit the exploration of the resulting feature space, while the use of LHS can expand the feature selection possibilities in the context of feature selection. Secondly, this study shows that microarray classification using GA with LHS (GALHS) consistently outperforms other feature selection methods such as based correlation features (BCF), principal component analysis (PCA), relief, and lasso. Thus, this research contributes to feature selection by applying LHS and GA to optimize the performance of microarray data classification models.
Stacking-based ensemble learning for identifying artist signatures on paintings Hidayati, Shintami Chusnul; Irawan Rahardja, Agustinus Aldi; Suciati, Nanik
Indonesian Journal of Electrical Engineering and Computer Science Vol 36, No 3: December 2024
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijeecs.v36.i3.pp1683-1693

Abstract

Identifying artist signatures on paintings is essential for authenticating artworks and advancing digital humanities. An artist’s signature is a consistent element included in each painting that the artist creates, providing a unique identifier for their work. Traditional methods that rely on expert analysis and manual comparison are time-consuming and are prone to human error. Although convolutional neural networks (CNNs) have shown promise in automating this process, existing single-model approaches struggle with the diversity and complexity of artistic styles, leading to limitations in their performance and generalizability. Therefore, this study proposes an ensemble learning approach that integrates the predictive power of multiple CNN-based models. The proposed framework leverages the strengths of three state-of-the-art CNNs: EfficientNetB4, ResNet-50, and Xception. These models were independently trained, and the predictions were combined using a meta-learning strategy. To address class imbalance, data augmentation techniques and weighted loss functions were employed. The experimental results obtained on a dataset of more than 8,000 paintings from 50 artists demonstrate significant improvements over individual CNN architectures and other ensemble methods, thereby effectively capturing complex features and improving generalizability.
Co-Authors Adhira Riyanti Amanda Adni Navastara, Dini Agus Eko Minarno Agus Priyono Agus Zainal Arifin Agus Zainal Arifin Ahmad Saikhu Ahmad Syauqi Ahmad Syauqi Akwila Feliciano Akwila Feliciano Akwila Feliciano Pradiptatmaka Alam Ar Raad Stone Aldinata Rizky Revanda Altriska Izzati Khairunnisa Hermawan Amelia Devi Putri Ariyanto Amirullah Andi Bramantya Andika Rahman Teja Anny Yuniarti Antonius Kevin Wiguna Ardian Yusuf Wicaksono Ari Wijayanti Aris Fanani Arrie Kurniawardhani Arsy Bilahi Tama Ary Mazharuddin Shiddiqi Arya Yudhi Wijaya Atika Faradina Randa Atikah, Luthfi Avin Maulana Awangditama, Bangun Rizki Ayu Kardina Sukmawati Ayu Septya Maulani Baso, Budiman Bryan Nandriawan Bui, Ngoc Dung Chastine Fatichah Chastine Fatichah Chilyatun Nisa' Damayanti, Putri Daniel Sugianto Darlis Herumurti Davin Masasih Diana Purwitasari Dimas Rahman Oetomo Dini Adni Navastara Dini Adni Navastara, Dini Adni Dion Devara Aryasatya Eko Prasetyo Eva Yulia Puspaningrum Evelyn Sierra Fairuuz Azmi Firas Faishal Azka Jellyanto Faizin, Muhammad 'Arif Fajar Astuti Hermawati Fandy Kuncoro Adianto Fandy Kuncoro Adianto Febri Liantoni, Febri Fiqey Indriati Eka Sari Fitri Bimantoro Ginardi, R.V. Hari Glenaya Gou Koutaki Gurat Adillion, Ilham Hafidz, Abdan Handayani Tjandrasa Handayani Tjandrasa Hani Ramadhan Haq, Arinal Hidayat, Ahmad Nur Hidayati, Shintami Chusnul Hilya Tsaniya Imagine Clara Arabella Imam Kuswardayan Imam Mustafa Kamal Irawan Rahardja, Agustinus Aldi Isye Arieshanti Isye Arieshanti Januar Adi Putra Januar Adi Putra Kautsar, Faiz Keiichi Uchimura Kevin Christian Hadinata Kevin Christian Hadinata M. Bahrul Subkhi Maulidan Bagus A.R Maulidiya, Erika Mawaddah, Saniyatul MIFTAHOL ARIFIN, MIFTAHOL Mochammad Zharif Asyam Marzuqi Muchamad Kurniawan Muchamad Kurniawan Muchamad Kurniawan, Muchamad Muhamad Nasir Muhammad 'Arif Faizin Muhammad Alif Satriadhi Muhammad Farih Muhammad Fikri Sunandar Mutmainnah Muchtar Nafa Zulfa Ni Luh Made ITS Novrindah Alvi Hasanah R Dimas Adityo R. Dimas Adityo Rachman, Rudy Rahma Fida Fadhilah Rangga Kusuma Dinata Rangga Kusuma Dinata Rayssa Ravelia Rizal A Saputra Rizal A Saputra, Rizal A Rohman Dijaya Romario Wijaya Safhira Maharani Safhira Maharani Salim Bin Usman Salim Bin Usman Salsabiil Hasanah Sarimuddin, Sarimuddin Septiana, Nuning Sherly Rosa Anggraeni Sherly Rosa Anggraeni Shintami Chusnul Hidayati Shofiya Syidada Sjahrunnisa, Anita Suastika Yulia Riska Sugianela, Yuna Surya Fadli Alamsyah Syavira Tiara Zulkarnain Tanzilal Mustaqim Tiara Anggita Tiara Anggita Tsaniya, Hilya Wahyu Saputra, Vriza Wan Sabrina Mayzura Wibowo, Della Aulia Wicaksono, Farhan Wijayanti Nurul Khotimah Yulia Niza Yulia Niza Yuna Sugianela Yuna Sugianela Yuslena Sari, Yuslena Yuwanda Purnamasari Pasrun Zakiya Azizah Cahyaningtyas Zakiya Azizah Cahyaningtyas