Claim Missing Document
Check
Articles

Found 2 Documents
Search
Journal : International Journal of Robotics and Control Systems

Cucumber Disease Image Classification with A Model Combining LBP and VGG-16 Features Arifin, Miftahol; Yuniarti, Anny; Suciati, Nanik
International Journal of Robotics and Control Systems Vol 4, No 3 (2024)
Publisher : Association for Scientific Computing Electronics and Engineering (ASCEE)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.31763/ijrcs.v4i3.1529

Abstract

Cucumber (Cucumis sativus) is a significant horticultural crop worldwide, highly valued for both fresh consumption and processing. However, cucumber cultivation faces challenges due to diseases that can substantially reduce yield and quality. Diseases like leaf spots, stem wilt, and fruit rot are caused by pathogens including viruses, bacteria, and fungi. Traditionally, disease detection in cucumbers is performed manually, which is time-consuming and inefficient. Therefore, developing machine vision-based models using Deep Learning (DL) and Machine Learning (ML) for early disease detection through image analysis is crucial for assisting farmers. While many studies on plant disease classification using various DL and ML models show optimal results, research on cucumbers has mostly focused on leaf diseases. This study aims to optimize cucumber disease image classification by developing a model that combines Local Binary Pattern (LBP) texture features and VGG-16 convolutional features. The dataset used, Cucumber Disease Recognition Dataset consists of 8 classes of cucumber plant disease images covering leaves, stems, and fruits. This study classifies cucumber plant disease images using Random Forest (RF) combined with LBP texture features and VGG-16 visual features and compares its performance with models using VGG-16, LBP+RF, and VGG-16+RF on the same dataset. The results show that the proposed model achieved a precision of 84.7%, recall of 84%, F1-Score of 83.8%, and accuracy of 84%. These results outperform the comparative models, demonstrating the effectiveness of the combined approach in classifying cucumber plant diseases.
ESI-YOLO: Enhancing YOLOv8 with Efficient Multi-Scale Attention and Wise-IoU for X-Ray Security Inspection Haq, Arinal; Suciati, Nanik; Bui, Ngoc Dung
International Journal of Robotics and Control Systems Vol 5, No 3 (2025)
Publisher : Association for Scientific Computing Electronics and Engineering (ASCEE)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.31763/ijrcs.v5i3.1983

Abstract

Security inspection is a priority for preventing threats and criminal activities in public places. X-ray imaging can help with the closed luggages checking process. However, interpreting X-ray images is challenging due to the complexity and diversity of prohibited items. This paper proposes ESI-YOLO, an enhanced YOLOv8-based model for prohibited item detection in X-ray security inspection. The model integrates Efficient Multi-Scale Attention (EMA) and Wise-IoU (WIoU) loss function to improve multi-scale feature representation and detection accuracy. EMA improves multi-scale feature representation, while WIoU enhances bounding box regression, particularly in cluttered and overlapping scenarios. Comprehensive experiments on the CLCXray and PIDray datasets validate the effectiveness of ESI-YOLO. A systematic exploration for the optimal placement of EMA integration on YOLOv8 architecture reveals that the scenario with direct integration in both backbone and neck sections emerges as the most effective configuration without introducing significant computational complexity. Ablation experiments demonstrate the synergistic effect of combining EMA and WIoU in ESI-YOLO, outperforming individual component additions. ESI-YOLO demonstrates notable advancements over the baseline YOLOv8 model, achieving mAP50 improvements of 0.9% on CLCXray and 3.5% on the challenging hidden subset of PIDray, with a computational cost of 8.4 GFLOPs. Compared to other nano-sized models, ESI-YOLO exhibits enhanced accuracy while maintaining computational efficiency, making it a promising solution for practical X-ray security inspection systems.
Co-Authors Adhira Riyanti Amanda Adni Navastara, Dini Agus Eko Minarno Agus Priyono Agus Zainal Arifin Agus Zainal Arifin Ahmad Saikhu Ahmad Syauqi Ahmad Syauqi Akwila Feliciano Akwila Feliciano Akwila Feliciano Pradiptatmaka Alam Ar Raad Stone Aldinata Rizky Revanda Altriska Izzati Khairunnisa Hermawan Amelia Devi Putri Ariyanto Amirullah Andi Bramantya Andika Rahman Teja Anny Yuniarti Antonius Kevin Wiguna Ardian Yusuf Wicaksono Ari Wijayanti Aris Fanani Arrie Kurniawardhani Arsy Bilahi Tama Ary Mazharuddin Shiddiqi Arya Yudhi Wijaya Atika Faradina Randa Atikah, Luthfi Avin Maulana Awangditama, Bangun Rizki Ayu Kardina Sukmawati Ayu Septya Maulani Baso, Budiman Bryan Nandriawan Bui, Ngoc Dung Chastine Fatichah Chastine Fatichah Chilyatun Nisa' Damayanti, Putri Daniel Sugianto Darlis Herumurti Davin Masasih Diana Purwitasari Dimas Rahman Oetomo Dini Adni Navastara Dini Adni Navastara, Dini Adni Dion Devara Aryasatya Eko Prasetyo Eva Yulia Puspaningrum Evelyn Sierra Fairuuz Azmi Firas Faishal Azka Jellyanto Faizin, Muhammad 'Arif Fajar Astuti Hermawati Fandy Kuncoro Adianto Fandy Kuncoro Adianto Febri Liantoni, Febri Fiqey Indriati Eka Sari Fitri Bimantoro Ginardi, R.V. Hari Glenaya Gou Koutaki Gurat Adillion, Ilham Hafidz, Abdan Handayani Tjandrasa Handayani Tjandrasa Hani Ramadhan Haq, Arinal Hidayat, Ahmad Nur Hidayati, Shintami Chusnul Hilya Tsaniya Imagine Clara Arabella Imam Kuswardayan Imam Mustafa Kamal Irawan Rahardja, Agustinus Aldi Isye Arieshanti Isye Arieshanti Januar Adi Putra Januar Adi Putra Kautsar, Faiz Keiichi Uchimura Kevin Christian Hadinata Kevin Christian Hadinata M. Bahrul Subkhi Maulidan Bagus A.R Maulidiya, Erika Mawaddah, Saniyatul MIFTAHOL ARIFIN, MIFTAHOL Mochammad Zharif Asyam Marzuqi Muchamad Kurniawan Muchamad Kurniawan Muchamad Kurniawan, Muchamad Muhamad Nasir Muhammad 'Arif Faizin Muhammad Alif Satriadhi Muhammad Farih Muhammad Fikri Sunandar Mutmainnah Muchtar Nafa Zulfa Ni Luh Made ITS Novrindah Alvi Hasanah R Dimas Adityo R. Dimas Adityo Rachman, Rudy Rahma Fida Fadhilah Rangga Kusuma Dinata Rangga Kusuma Dinata Rayssa Ravelia Rizal A Saputra Rizal A Saputra, Rizal A Rohman Dijaya Romario Wijaya Safhira Maharani Safhira Maharani Salim Bin Usman Salim Bin Usman Salsabiil Hasanah Sarimuddin, Sarimuddin Septiana, Nuning Sherly Rosa Anggraeni Sherly Rosa Anggraeni Shintami Chusnul Hidayati Shofiya Syidada Sjahrunnisa, Anita Suastika Yulia Riska Sugianela, Yuna Surya Fadli Alamsyah Syavira Tiara Zulkarnain Tanzilal Mustaqim Tiara Anggita Tiara Anggita Tsaniya, Hilya Wahyu Saputra, Vriza Wan Sabrina Mayzura Wibowo, Della Aulia Wicaksono, Farhan Wijayanti Nurul Khotimah Yulia Niza Yulia Niza Yuna Sugianela Yuna Sugianela Yuslena Sari, Yuslena Yuwanda Purnamasari Pasrun Zakiya Azizah Cahyaningtyas Zakiya Azizah Cahyaningtyas