Claim Missing Document
Check
Articles

Perancangan MPPT Modified Incremental Conductance menggunakan Interleaved Boost Converter untuk Reduksi Osilasi ALDIANTAMA, GIGIH HERNAIN NANDA; WINDARKO, NOVIE AYUB; RAHARJA, LUCKY PRADIGTA SETIYA
ELKOMIKA: Jurnal Teknik Energi Elektrik, Teknik Telekomunikasi, & Teknik Elektronika Vol 10, No 1: Published January 2022
Publisher : Institut Teknologi Nasional, Bandung

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.26760/elkomika.v10i1.76

Abstract

ABSTRAKSebagian besar algoritma Maximum Power Point Tracking (MPPT), osilasi daya pada kondisi steady-state menyebabkan kerugian daya (losses) di sistem tersebut. Untuk menangani masalah tersebut dirancanglah algoritma Modified Incremental Conductance, dengan menggunakan kesalahan minimal yang diperbolehkan untuk mengurangi osilasi daya pada kondisi steady-state serta menambahkan variable step size untuk mempercepat pelacakan titik daya maksimum. Dari hasil pengujian berbasis simulasi diketahui bahwa simulasi Three-Legs Interleaved Boost Converter dengan MPPT Modified Incremental Conductance dapat melakukan pelacakan titik daya maksimum dengan nilai iradiasi yang divariasi, algoritma Modified Incremental Conductance dapat melacak titik daya maksimum rata-rata sebesar 0,19 detik dan osilasi daya rata-rata sebesar 0,016 Watt.Kata kunci: MPPT, Modified Incremental Conductance, Interleaved Boost Converter, Reduksi Osilasi ABSTRACTMost of the Maximum Power Point Tracking (MPPT) algorithms, power oscillations in steady-state conditions cause power losses (losses) in the system. To deal with this problem, the Modified Incremental Conductance algorithm was designed, using the minimum allowable error to reduce power oscillations in steady-state conditions and adding a variable step size to accelerate the tracking of the maximum power point. From the simulation-based test results, it is known that the Three-Legs Interleaved Boost Converter simulation with MPPT Modified Incremental Conductance can track the maximum power point with varied irradiation values, the Modified Incremental Conductance algorithm can track the maximum power point on average 0,19 seconds and oscillations average power of 0,016 Watt.Keywords: MPPT, Modified Incremental Conductance, Interleaved Boost Converter, Oscillation Reduction
MPPT Algorithm Based on Zebra Optimization Algorithm for Solar Panels System with Partial Shading Conditions Eviningsih, Rachma Prilian; Efendi, M. Zaenal; Windarko, Novie Ayub; Nugraha, Anggara Trisna; Prasetya, Farhan Dwi; Abdilla, M. Rafi Damas
Indonesian Journal of Electronics, Electromedical Engineering, and Medical Informatics Vol. 6 No. 4 (2024): November
Publisher : Jurusan Teknik Elektromedik, Politeknik Kesehatan Kemenkes Surabaya, Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.35882/ijeeemi.v6i4.11

Abstract

The use of solar panels is being pursued as a solution to reduce dependence on fossil fuels. However, solar panels face challenges such as power fluctuations due to environmental conditions and partial shading. To address these issues, an MPPT technique using Zebra Optimization Algorithm (ZOA) has been developed, which integrates foraging behaviour and defensive strategies to achieve GMPP. Simulation testing results show the superiority of ZOA over PSO in achieving GMPP. ZOA's contribution in addressing this problem is to efficiently perform a global search to find the optimal MPP, even under varying partial shading conditions. The algorithm mimics the behaviour of zebras in foraging and defending against predator attacks, enabling a fast solution search process and higher precision. ZOA can overcome the local maxima trap by expanding the search space, allowing solar panels to function close to optimal efficiency even if there is shading on a portion of the module. This improves system stability and performance and reduces energy loss due to partial shading. ZOA achieved a tracking accuracy of 99.99% with an average tracking time of 0.779 seconds and with a power gain of 28.5%, surpassing PSO with an accuracy of 95.18%, an average trcking time of 0.850 seconds with a power gain of 24.68%. In hardware testing, ZOA is also superior to PSO with an average tracking accuracy of 98.96% while PSO is 97.22%. These results underline the outstanding performance of the ZOA algorithm in optimising the power output of solar panels.
High Frequency Inverter with Fuzzy Logic Controller for Portable Induction Heater Ummah, Karunia Vio Nita Rusyatul; Eviningsih, Rachma Prilian; Windarko, Novie Ayub
Emitor: Jurnal Teknik Elektro Vol 24, No 3: November 2024
Publisher : Universitas Muhammadiyah Surakarta

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.23917/emitor.v24i3.6651

Abstract

The development of technology today makes humans strive to save natural resources and switch to alternative energy. For reasons of saving energy, saving costs, easy to use, and having a high level of safety, induction heaters can be used as an alternative to overcome these problems. Induction heaters can generate heat through the process of electromagnetic induction when cookware made of metal is brought closer. In this process the coil is supplied with alternating electric current from a high frequency inverter which then induces the cookware with metal material to cause heat. The heat in the induction heater will be regulated through the switching frequency of the high-frequency inverter which gets its voltage source from a 24V battery and increases the voltage to 48V. This induction heater is designed to maintain the setpoint temperature 70°C and 100°C using fuzzy logic control. From the test results it can be seen that the fuzzy logic control can reach a setpoint temperature of 70°C within 20 minutes and after being disturbed the fuzzy logic control can maintain the setpoint temperature with an error percentage of around 0.14% - 0.29%. Meanwhile, the setpoint temperature of 100°C can be achieved within 35 minutes and after being disturbed the fuzzy logic control can maintain the setpoint temperature with an error percentage of around 0.14% -0.9%.
Minimizing Total Harmonic Distortion of 7-Level Packed U-Cell Multilevel Inverter Using Whale Optimization Algorithm Ebrahimi, Faizulddin; Windarko, Novie Ayub; Gunawan, Agus Indra
The Indonesian Journal of Computer Science Vol. 12 No. 6 (2023): The Indonesian Journal of Computer Science (IJCS)
Publisher : AI Society & STMIK Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.33022/ijcs.v12i6.3507

Abstract

This paper presents an innovative study introducing a novel design for a single-phase, 7-level inverter. The design combines the modified pulse width modulation (MPWM) technique with the compact packed U-cell (PUC) topology. We evaluate this inverter's performance through comprehensive simulations in the MATLAB Simulink software. Multi-level inverter (MLI) technology is crucial for high-power, medium-voltage energy control. However, using numerous semiconductor switches in traditional MLI setups poses challenges at higher voltage levels, including increased size, costs, and losses. To address these issues, our study proposes a transformative approach, emphasizing reducing active switches within the multi-level inverter architecture. Consequently, we introduce an innovative 7-level PUC-MLI design. This configuration not only reduces harmonic distortion but also addresses cost concerns. Strategically manipulating semiconductor switch sequences significantly enhances the inverter's operational efficiency. A notable contribution is our inventive method to reduce total harmonic distortion (THD) in the inverter's output voltage, achieved through a whale optimization algorithm (WOA). Implementing this algorithm substantially lowers THD levels. Importantly, this approach's effectiveness extends to various inverter topologies and levels, offering a substantial THD reduction without additional expenses.
Pre- Estimasi Daya Aktif pada Gedung Bertingkat dengan menggunakan Time Series Neural Network Armanto, Ony; Novie Ayub Windarko; Setiawardhana
The Indonesian Journal of Computer Science Vol. 13 No. 2 (2024): The Indonesian Journal of Computer Science (IJCS)
Publisher : AI Society & STMIK Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.33022/ijcs.v13i2.3766

Abstract

Penggunaan energi listrik untuk kehidupan sehari – hari semakin meningkat tanpa adanya pengawasan dan pembatasan yang mengakibatkan penggunaan energi semakin semena – mena , penggunaan energi berlebihan juga disebabkan perkembangan teknologi yang semakin memudahkan pekerjaan manusia. Namun kebutuhan energi listrik yang besar tidak disertai dengan kapasitas energi listrik yang memadai. Oleh sebab itu diperlukan sebuah metode estimasi beban listrik jangka menengah dengan menggunakan Time Series Neural Network. Penelitian ini diharapkan dapat mengurangi jumlah energi listrik yang tidak terpakai dan digunakan se efisien mungkin. Pada penelitian ini menghasilkan nilai MAPE sebesar 5.36% dan nilai RMSE sebesar 9.2
Simulasi Perbandingan Motor Listrik dengan Mesin Pembakaran Dalam Sebagai Penggerak Sepeda Motor CVT Abdussalam, Muhammad Zayyana; Arini, Nu Rhahida; Windarko, Novie Ayub
The Indonesian Journal of Computer Science Vol. 14 No. 1 (2025): The Indonesian Journal of Computer Science (IJCS)
Publisher : AI Society & STMIK Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.33022/ijcs.v14i1.4425

Abstract

Fuel vehicle conversion to electric vehicle requires electric motor with power equivalently to the vehicle’s fuel engine. Some CVT motorcycle conversion experiment using BLDC motor propulsion resulting 40 km/hour maximum velocity electric vehicle. This study uses computer simulations to compare the performance of electric motor and gasoline fueled internal combustion engine. The results show that fuel vehicle performance overthrow electric vehicle where 200 kg total vehicle mass absorbing power about 4,9 kW for fuel vehicle and 2,8 kW for electric vehicle then 63 km/hour maximum velocity for fuel vehicle and 53 km/hour for electric vehicle. Those result become equal when both propulsion have equal input where absorbed power reach 2,7 kW and maximum velocity reach 50 km/hour.
Performance Optimization of Air Cooler Using Peltier and SEPIC Converter as Temperature Control Muchammad Ruben Imawan; Rachma Prilian Eviningsih; Novie Ayub Windarko
Emitor: Jurnal Teknik Elektro Vol 25, No 1: March 2025
Publisher : Universitas Muhammadiyah Surakarta

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.23917/emitor.v25i1.7642

Abstract

Air cooler has an evaporative mode that is used to get a cooler temperature output than without using evaporative mode. The evaporative cooling process involves water that is cooled with an ice cube placed in a water tank on the air cooler, where the outside air entering the air cooler will be cooler when exposed to honeycomb that has been submerged in cold water from the water tank so that the air temperature released by the air cooler will be cooler. The process of cooling the air temperature of the air cooler uses an ice cube which when used for a long time, the temperature will start to rise again so that the air coming out of the air cooler will rise again and become less cold than before. The purpose of this research is to create a system to keep the water temperature in the air cooler tank stable so that the temperature of the air released will also be cooler. This research was conducted using simulations with MATLAB software. Based on the simulation data that has been obtained, it is found that the temperature can be stabilized at 25 ℃ by using the fuzzy logic control method. By using the 5x5 fuzzy control method, the temperature can reach 25℃ with a time of 0.389ms while with 7x7 fuzzy the temperature can stabilize at 25℃ with a time of 0.407ms. Based on the results of open loop test, the temperature will continue to decrease in the range of 21 ℃, this is because this test does not use fuzzy logic control so that the temperature can't be stable at 25 ℃.
Design and Implementation MPPT Improved Whale Optimization Algorithm to Overcome Partial Shading Condition on Solar Panel Habibi, Muhammad Nizar; Prakoso, Rifqi Noviantono; Adila, Ahmad Firyal; Efendi, Moh. Zaenal; Windarko, Novie Ayub; Eviningsih, Rachma Prilian
invotek Vol 24 No 2 (2024): INVOTEK: Jurnal Inovasi Vokasional dan Teknologi
Publisher : Universitas Negeri Padang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.24036/invotek.v24i2.1219

Abstract

Solar energy is a type of renewable energy whose capacity is tremendous and fast in increasing its capacity so that it can be used for energy sustainability in the future. Solar panels are the only devices that can be used to utilize solar energy. Maximum Power Point Tracking (MPPT) is a method to maximize the power generated by solar panels. However, the problem with solar panels is the condition of partial shading, this occurs due to something blocking the rate of solar irradiation to the solar panel. The result is that there are 2 or more maximum power points from solar panels, the highest power is the Global Maximum Power Point (GMPP) and the other is the Local Maximum Power Point (LMPP). This partial shading condition cannot use conventional MPPT methods due to the complexity of finding GMPP. So, MPPT optimization method is needed, one of which is the Improved Whale Optimization Algorithm (IWOA). IWOA is a development of the Whale Optimization Algorithm (WOA) by applying the Sine-Tent-Cosine Map for the first time the algorithm works to be more effective in the initialization process of the algorithm population and can ensure a more uniform distribution of population distribution throughout the search space. IWOA will be applied to the MPPT system to achieve the GMPP of the solar panel under partial shading conditions.
Estimasi Kecepatan Motor Brushless DC dengan Menggunakan Metode Sliding Mode Observer Abdurrahman, Rizqy; Windarko, Novie Ayub; Sumantri, Bambang
BRILIANT: Jurnal Riset dan Konseptual Vol 6 No 3 (2021): Volume 6 Nomor 3, Agustus 2021
Publisher : Universitas Nahdlatul Ulama Blitar

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (1572.293 KB) | DOI: 10.28926/briliant.v6i3.700

Abstract

Pada dasarnya motor brusless DC  (BLDC) atau yang biasa juga disebut permanent magnet synchronous motor (PMSM) menggunakan hall-sensor untuk mengetahui posisi dan kecepatan dari motor tersebut. Data nilai arus (I) dan tegangan (V) pada pemodelan dasar dari motor BLDC sebagai masukan dari metode sliding mode observer (SMO). Metode sensorless yang didasarkan pada SMO diajukan untuk menggantikan perangkat hall-sensor untuk mengestimasi posisi rotor dan kecepatan motor BLDC. Pengujian akan dilakukan menggunakan aplikasi power simulator (PSim). Untuk mendapatkan error estimasi kecepatan pengujian dilakukan dengan membandingkan kecepatan aktual dengan kecepatan estimasi. Pengujian dilakukan dengan dua (2) nilai kecepatan yang berbeda yaitu sebesar 1000 r/min dan 1200 r/min dan dua (2) beban mekanik yang berbeda yaitu sebesar 0.1 Nm dan 0.5 Nm. Hasil dari simulasi yang telah dilakukan dengan kecepatan motor BLDC sebesar 1000 r/min dan beban mekanik sebesar 0.1 Nm, didapatkan nilai error estimasi kecepatan sebesar 6,7%, dengan kecepatan sebesar 1000 r/min dan beban sebesar 0.5 Nm, didapatkan nilai error estimasi sebesar 7,2%, dengan kecepatan motor sebesar 1200 r/min dan beban sebesar 0.1 Nm, didapatkan nilai error estimasi sebesar 9,5%, dengan kecepatan motor sebesar 1200 r/min dan beban sebesar 0.5 Nm, didapatkan nilai error estimasi sebesar 9,8%. Dari pengujian tersebut membuktikan sliding mode observer dapat bekerja dengan baik karena nilai error estimasi kurang dari 10% dan merupakan metode yang robust.
Estimasi State-of-Charge Pada Baterai Lithium-Ion Menggunakan Deep Neural Network Amrullah, Haniifan Patra; Windarko, Novie Ayub; Sumantri, Bambang
BRILIANT: Jurnal Riset dan Konseptual Vol 9 No 3 (2024): Volume 9 Nomor 3, Agustus 2024
Publisher : Universitas Nahdlatul Ulama Blitar

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.28926/briliant.v9i3.1874

Abstract

As electric vehicles (EV) become increasingly popular in the automotive world, an accurate State-of-Charge (SoC) estimation is critical to optimizing energy utilization, increasing driving range and ensuring long-lasting battery system. This research focuses on the application of Deep Neural Networks (DNN) as an SoC estimation method in EV, exploiting the inherent capacity of DNN to learn complex relationships in vast data sets. The results of the performed simulations show that the proposed DNN-based SoC estimation method achieves a high level of accuracy, outperforming traditional estimation techniques, especially in scenarios involving rapid changes in driving conditions. This research also explores the impact of Neural Networks architecture and hyperparameter tuning on overall performance and provides insights for optimizing DNN-based SoC estimation systems. From the tests that have been carried out, an error value of 1.3% is obtained from the results of the training carried out on the DNN structure that has been prepared.
Co-Authors - Sutedjo Abdilla, M. Rafi Damas Abdilla, Moch Rafi Damas Abdul Rizal Abdul Rizal, Abdul Abdurrahman, Rizqy Abdussalam, Muhammad Zayyana ACHMAD AFANDI Achmad Afandi, Achmad Ahmad Firyal Adila Akhmad Puryanto Aldi Erzanuari Aldi Erzanuari, Aldi ALDIANTAMA, GIGIH HERNAIN NANDA Alvin Noer Ramadhan Alwi Daffa` Rosydi Amran, Osamah Abdullah Yahya Amrullah, Haniifan Patra Anang Tjahjono, Anang Anggara Trisna Nugraha Ardhia Wishnuprakasa Arief Rahmadani Arini, Nu Rhahida Armanto, Ony Ashary, Wima Audya Elisa Rheinanda Bambang Sumantri Bambang Sumantri Bambang Sumantri Bima Dwi Priya Setiawan Diah Septi Yanaratri Dimas Nur Prakoso Dimas Okky Anggriawan Ebrahimi, Faizulddin Efendi, M. Zaenal Eka Prasetyono, Eka Endro Wahjono Epyk Sunarno Era Purwanto Evi Nafiatus Sholikhah Fahmi Ahyar Izzaqi Fakhruddin, Hanif Hasyier Ferdiansyah, Indra Firmansyah Nur Budiman, Firmansyah Nur Fuad, Muchamad Chaninul Gede Patrianaya Margayasa Wirsuyana Gunawan, Agus Indra Habibi, Muhammad Nizar Hasnira Hasnira Hazlie Mokhlis Husien.R, Alwi Azis Husnu Zain, Habibi Mushthofa Irianto Irianto iwan Syarif Kadek Reda Setiawan Suda Kuswadi, Son Lestyanto, Dicky Satria Nanda Loegimin, Maruto Swatara Lucky Pradigta Setiya Raharja Lucky Pradigta Setiya Raharja Luki Septya Mahendra Luluk Badriyah Mas Sulung Wisnu Jati Mentari Putri Jati Miftahul Arrijal MOCHAMAD ARI BAGUS NUGROHO Mochammad Ari Bagus Nugroho Moh Rifqi Faqih Moh. Faisal Amir Moh. Faisal Amir Moh. Zaenal Efendi Mohammad Imron Dwi Prasetyo Mohammad Imron Dwi Prasetyo Mohammad Zaenal Efendi Muchamad Chaninul Fuad Muchammad Ruben Imawan Muhammad Abdul Haq Muhammad Farizky Alvianandy Muhammad Khanif Khafidli Muhammad Prihadi Eko Wahyudi Muhammad Wildan Alim Muhtar, Muhdalifah Naafilah Widya Mulya Nugraha, Syechu Dwitya Ony Asrarul Q. Prakoso, Rifqi Noviantono Prasetya, Farhan Dwi Puspita Ningrum Q., Ony Asrarul Qoriatul Fitriyah Qudsi, Ony Asrarul Rachma Prilian Eviningsih Rachma Prilian Eviningsih Rachma Prilian Eviningsih, Rachma Prilian Ragil Wigas Wicaksana Renny Rakhmawati, Safira Nur Hanifah, Renny Rakhmawati, Rizal Nurdiansyah Rizqy Abdurrahman Romadloniyah, Nur Shinta S Aisyah Salsabila, Regina Setiawardhana Setiawardhana, Setiawardhana Sony Junianto Suhariningsih Suhariningsih Suryono . Suryono Suryono Suryono Suryono Sutedjo Sutedjo Ummah, Karunia Vio Nita Rusyatul Wicaksana, Ragil Wigas Wima Ashary Wirsuyana, Gede Patrianaya Margayasa Wishnuprakasa, Ardhia Yusvida, Rizka Zainal Arief Zainal Arief