Claim Missing Document
Check
Articles

Invigilator Examination Scheduling using Partial Random Injection and Adaptive Time Variant Genetic Algorithm Seisarrina, Maulidya Larasaty; Cholissodin, Imam; Nurwarsito, Heru
Journal of Information Technology and Computer Science Vol. 3 No. 2: November 2018
Publisher : Faculty of Computer Science (FILKOM) Brawijaya University

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (406.613 KB) | DOI: 10.25126/jitecs.20183250

Abstract

Abstract. Examination for every semester is a routine activity for faculties to do. Academic division of faculty responsible to make the schedule for every subject that is going to be tested, and prepare rooms for the test. Meanwhile, coordinators of invigilator committee responsible to make the schedule in FILKOM UB. This research focuses on scheduling the invigilator’s schedule in FILKOM UB. Scheduling with conventional method or manual takes much time because it needs to consider many rules on scheduling it. That is the reason why we need a system to schedule it. The purpose of making this system is to help the committee to schedule their invigilator’s time line. This research offers a concept of solution from using genetic algorithm. Genetic algorithm is an algorithm to find the optimum solution. The system of scheduling that use this genetic algorithm method can produce invigilator’s schedule that is having the least troubles on the arrangement. The data that is used in this research is the final test’s schedule of the odd semester in 2015/2016, lecturer and the employee’s data of FILKOM UB. The optimal genetic parameter that is obtained from the test consists of 900 population, 3000 generations, and a combination of crossover rate and mutation rate value which are 0,4 and 0,6. The system that is built in making this invigilator’s schedule is close to the optimum point with 0,877 fitness value.Keywords: scheduling, invigilator, partial random injection, adaptive time variant genetic algorithm.
Prediction of Rainfall using Simplified Deep Learning based Extreme Learning Machines Cholissodin, Imam; Sutrisno, Sutrisno
Journal of Information Technology and Computer Science Vol. 3 No. 2: November 2018
Publisher : Faculty of Computer Science (FILKOM) Brawijaya University

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (1241.643 KB) | DOI: 10.25126/jitecs.20183258

Abstract

Prediction of rainfall is needed by every farmer to determine the planting period or for an institution, eg agriculture ministry in the form of plant calendars. BMKG is one of the national agency in Indonesia that doing research in the field of meteorology, climatology, and geophysics in Indonesia using several methods in predicting rainfall. However, the accuracy of predicted results from BMKG methods is still less than optimal, causing the accuracy of the planting calendar to only reach 50% for the entire territory of Indonesia. The reason is because of the dynamics of atmospheric patterns (such as sea-level temperatures and tropical cyclones) in Indonesia are uncertain and there are weaknesses in each method used by BMKG. Another popular method used for rainfall prediction is the Deep Learning (DL) and Extreme Learning Machine (ELM) included in the Neural Network (NN). ELM has a simpler structure, and non-linear approach capability and better convergence speed from Back Propagation (BP). Unfortunately, Deep Learning method is very complex, if not using the process of simplification, and can be said more complex than the BP. In this study, the prediction system was made using ELM-based Simplified Deep Learning to determine the exact regression equation model according to the number of layers in the hidden node. It is expected that the results of this study will be able to form optimal prediction model.Keywords: prediction, rainfall, ELM, simplified deep learning
Audit System Development for Government Institution Documents Using Stream Deep Learning to Support Smart Governance Cholissodin, Imam; Soebroto, Arief Andy; Sutrisno, Sutrisno
Journal of Information Technology and Computer Science Vol. 4 No. 1: June 2019
Publisher : Faculty of Computer Science (FILKOM) Brawijaya University

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (1246.411 KB) | DOI: 10.25126/jitecs.20194173

Abstract

Document audit system is a means of evaluating documents on the results of delivering information, administrative documentary evidence in the form of texts or others. Currently, these activities become easier with the presence of computer technology, smartphones, and the internet. One of the examples is the documents created by various government institutions whether local, city and central government. The instance is online-published documents that are shaded by certain government institutions. Before the documents are published or used as an archive or authentic evidence for reporting or auditing activities, the documents must go through the editing stage to correct if there are errors and deficiencies such as spelling errors or incomplete information. In the editing process, however, a person may not be able to escape from making mistakes that result in the existence of writing errors after the editing process before the submission. Word spelling mistakes can change the meaning of the conveyed knowledge and cause misunderstanding of information to the readers, especially for assessors or the audit team. Based on the problem, the researcher intends to assist the work of the audit preparation team in document analysis by proposing a system capable of detecting word spelling errors using the Dictionary Lookup method from Information Retrieval (IR) and Natural Language Processing (NLP) science combined with Stream Deep Learning algorithms. Dictionary Lookup method is considered effective in determining the spelling of words that are true or false based on Lexical Resource. In addition, String Matching method that has been developed can correct word-writing errors correctly and quickly.Keywords: spelling mistake detection, dictionary lookup, audit of government institution documents, stream deep learning
Development of Big Data App for Classification based on Map Reduce of Naive Bayes with or without Web and Mobile Interface by RESTful API Using Hadoop and Spark Cholissodin, Imam; Seruni, Diajeng Sekar; Zulqornain, Junda Alfiah; Hanafi, Audi Nuermey; Ghofur, Afwan; Alexander, Mikhael; Hasan, Muhammad Ismail
Journal of Information Technology and Computer Science Vol. 5 No. 3: Desember 2020
Publisher : Faculty of Computer Science (FILKOM) Brawijaya University

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (749.319 KB) | DOI: 10.25126/jitecs.202053233

Abstract

Big Data App is a developed framework that we made based on our previous project research and we have uploaded it on github, which is developing lightweight serverless both on Windows and Linux OS with the term of EdUBig as Open Source Hadoop Distribution. In this study, the focus is on solving problems related to difficulties in building a frontend and backend model of a Big Data application which by default only runs scripts through consoles in the terminal. This will be quite a tribulation for the end users when the Big Data application has been released and mass produced to general users (end users) and at the same time how the end users test the performance of the Map Reduce Naive Bayes algorithm used in several datasets. In accordance to these problems, we created the Big Data App framework to make the end users, especially developers, feel easier to build a Big Data application by integrating the frontend using the Web App from Django framework and Mobile App Native, while for the backend, we use Django framework that is able to communicate directly with the script either hadoop batch, streaming processing or spark streaming very easily and also to use the script for pig, hive, web hdfs, sqoop, oozie, etc. the making of which is extremely fast with reliable results. Based on the test results, a very significant result in the ease of data computation processing by the end users and the final results showing the highest classification accuracy of 88.3576% was obtained.Keywords: big data, map reduce of naive bayes, serverless, web and mobile app, restful api, django framework
Implementasi Teknik Watershed Dan Morfologi Pada Citra Satelit Untuk Segmentasi Area Universitas Brawijaya ., Sutrisno; Supianto, Ahmad Afif; Cholissodin, Imam
Jurnal Teknologi Informasi dan Ilmu Komputer Vol 1 No 1: April 2014
Publisher : Fakultas Ilmu Komputer, Universitas Brawijaya

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (2057.225 KB) | DOI: 10.25126/jtiik.20141198

Abstract

AbstrakPenelitian di bidang segmentasi citra telah banyak dilakukan, terutama di bidang citra satelit. Proses segmentasi ini dilakukan untuk melakukan deteksi terhadap objek-objek yang terdapat di dalam citra. Pada penelitian ini, diimplementasikan sebuah metode segmentasi citra dengan menggunakan teknik watershed dan morfologi. Pertama, citra diubah ke dalam format citra grayscale.Kemudian, citra grayscale tersebut diolah dengan metode watershed untuk mendapatkan segmentasi awal. Selanjutnya, citra segmentasi tersebut diperbaiki menggunakan metode morfologi untuk mengurangi segmentasi berlebih yang dihasilkan oleh proses sebelumnya. Uji coba dilakukan terhadap 5dataset citra satelitarea Universitas Brawijaya dengan tingkat skala yang berbeda-beda. Skala yang digunakan dalam penelitian ini meliputi 20m, 50m, 100m, 200m, dan 500m. Uji coba menunjukkan bahwa metode yang diusulkan berhasil melakukan segmentasi citra dengan skala kurang dari 100 meter.Semakin rendah nilai skala yang digunakan sebagai uji coba, segmentasi yang dihasilkan semakin baik.Kata kunci: Watershed, Morfologi Citra, Citra SatelitAbstractResearch in the field of image segmentation has been widely applied , especially in the field of satellite imagery. The segmentation process is performed to detect the objects present in the image. In this study, implemented a method of image segmentation using watershed and morphological techniques. First, the image is converted into grayscale format. Then the grayscale image is processed by the watershed method to get initial segmentation. Furthermore, the improved image segmentation using morphological methods to reduce the excessive segmentation generated by the previous process. Tests performed on 5 satellite imagery dataset UB area with levels varying scales. The scale used in this study include the 20 meters , 50 meters, 100 meters, 200 meters, and 500 meters. The trials showed that the proposed method successfully to segment the image with the scale of less than 100 meters . The lower the scale value is used as a test , the better the resulting segmentation .Keywords: Watershed, Morphological Image, Satellite Imagery
Prediksi Tinggi Muka Air (TMA) Untuk Deteksi Dini Bencana Banjir Menggunakan SVR-TVIWPSO Soebroto, Arief Andy; Cholissodin, Imam; Wihandika, Randy Cahya; Frestantiya, Maria Tenika; Arief, Ziya El
Jurnal Teknologi Informasi dan Ilmu Komputer Vol 2 No 2: Oktober 2015
Publisher : Fakultas Ilmu Komputer, Universitas Brawijaya

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (1302.981 KB) | DOI: 10.25126/jtiik.201522126

Abstract

Abstrak Banjir merupakan salah satu jenis bencana alam yang tidak dapat diprediksi kedatangannya, salah satu penyebabnya adalah adanya hujan yang terus – menerus(dari peristiwa alam). Faktor penyebab banjir dari segi meteorologi yaitu curah hujan yang tinggi dan air laut yang sedang pasang sehingga mengakibatkan tinggi permukaan air meningkat. Analisis terhadap data curah hujan serta tinggi permukaan air setiap periodenya dirasa masih belum dapat menyelesaikan permasalahan yang ada. Oleh karena itu, pada penelitian ini diusulkan teknik integrasi metode Time Variant Inertia Weight Particle Swarm Optimization(TVIWPSO) dan Support Vector Regression(SVR). Implementasi memadukan metode Regresi yaitu SVR untuk forecasting TMA, sedangkan TVIWPSO digunakan untuk mengoptimalisasi parameter – parameter yang digunakan di dalam SVR untuk memperoleh kinerja yang maksimal dan hasil yang akurat. Harapannya sistem ini akan dapat membantu mengatasi permasalahan untuk pendeteksian dini bencana banjir karena faktor cuaca yang tidak menentu. Hasil pengujian yang didapat dari 10 data bulanan yang berbeda menunjukkan bahwa didapatkan nilai error terkecil sebesar 0.00755 dengan menggunakan Mean Absolute Error untuk data Juni 2007 dengan menggunakan integrasi metode SVR-TVIWPSO. Kata Kunci : Support Vector Regression, Tinggi Muka Air, Time Variant Inertia Weight Particle Swarm Optimization. Abstract Flood is one type of natural disaster that can not be predicted its arrival, one reason is the rain that constantly occurs (from natural events). Factors that cause flooding in terms of meteorology are high rainfall and sea water was high, resulting in high water level increases. Analysis of rainfall data and water level in each period it is still not able to solve existing problems. Therefore, in this study the method proposed integration techniques Time Variant Inertia Weight Particle Swarm Optimization (TVIWPSO) and Support Vector Regression (SVR). Implementation combines regression method for forecasting TMA is SVR, while TVIWPSO used to optimize parameters that used in the SVR to obtain maximum performance and accurate results. Hope this system will be able to help solve the problems for the early detection of floods due to erratic weather. The result of forecasting experiment in water level forecasting from 10 monthly different data show that the smallest error rate is amount to 0.00755 using Mean Absolute Error for June 2007 with the integration method SVR-TVIWPSO. Keywords: Support Vector Regression, water level, Time Variant Inertia Weight Particle Swarm Optimization.
Segmentasi Kendaraan Menggunakan Improve Blob Analysis (BA) Pada Video Lalu Lintas ., Sutrisno; Cholissodin, Imam; Christanti, Rina; Dewi, Candra; Hidayat, Nurul
Jurnal Teknologi Informasi dan Ilmu Komputer Vol 2 No 1: April 2015
Publisher : Fakultas Ilmu Komputer, Universitas Brawijaya

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (996.895 KB) | DOI: 10.25126/jtiik.201521132

Abstract

AbstrakPenggunaan citra digital untuk keperluan penelitian sudah banyak dilakukan, salah satunya yaitu segmentasi. Segmentasi berfungsi untuk mendeteksi objek - objek yang terdapat pada citra, sehingga hasil segmentasi sangat penting untuk proses selanjutnya. Pada penelitian ini diusulkan teknik optimasi hasil background subtraction menggunakan kombinasi frame difference (FD) atau difference image dengan filter SDGD dan running average (RA) atau background updating dengan filter SDGD untuk diterapkan pada blob analysis. Alasan utama menggunakan penggabungan kedua metode tersebut adalah karena seringnya terdapat piksel objek yang tidak mampu dideteksi sehingga akan mengurangi tingkat optimasi pengenalan objek. Hasil pengujian akurasi dari 10 data uji yang masing – masing terdiri dari 30 frame menunjukkan bahwa aplikasi ini memiliki nilai akurasi tertinggi yakni 90% untuk pengujian threshold dan 100% untuk pengujian ukuran structure element. Sehingga dapat disimpulkan bahwa aplikasi ini mampu melakukan segmentasi kendaraan dengan baik.Kata kunci: filter SDGD, blob analysis, video lalu lintas, background subtraction.AbstractThe use of digital images for the purposes of research has been often applied, one of them is segmentation. Segmentation is used to detect objects contained in the image, so the segmentation result is very important for further processing. In this study, the results of the optimization technique proposed background subtraction using a combination of frame difference (FD) or a difference image with filter SDGD and running average (RA) or background updating with SDGD filter to be applied blob analysis. The main reason to use the merger of these two methods is that often there are pixels that are not able to detect objects that will reduce the level of optimization object recognition. The results of accuracy testing using 10 data testing for each data consisting of 30 frames shows that the system proposed in this paper has best accuracy of 90% for testing the threshold and 100% for testing the size of structure element. So it can be concluded that this system capable to segmentation the vehicle properly.Keywords: filter SDGD, blob analysis, traffic video, background subtraction
Integrasi Metode Fuzzy Additive SVM (FASVM) Menggunakan Model Warna YUV-CMY-HSV Untuk Klasifikasi Bibit Unggul Sapi Bali Melalui Citra Digital Cholissodin, Imam; Soebroto, Arief Andy; Hidayat, Nurul
Jurnal Teknologi Informasi dan Ilmu Komputer Vol 2 No 2: Oktober 2015
Publisher : Fakultas Ilmu Komputer, Universitas Brawijaya

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (1059.061 KB) | DOI: 10.25126/jtiik.201522142

Abstract

AbstrakBudidaya sapi sangat identik dengan pemilihan bibit unggul, namun permasalahan yang sering muncul adalah cara mengenali bibit unggul tersebut yang relatif tidak mudah, cenderung membutuhkan waktu cukup lama. Peternak masih sering mengamati warna kulit dengan mata secara langsung, yang cenderung kurang teliti. Sehingga dalam penelitian ini, diusulkan metode dengan menggunakan beberapa model warna yang nantinya sebagai rekomendasi untuk fitur yang optimal dalam sistem. Kemudian metode klasifikasi yang digunakan adalah Fuzzy Additive Support Vector Machine (FASVM). Data yang digunakan didapatkan dari Balai Pembibitan Ternak Unggul (BPTU) Sapi Bali. Dari hasil pengujian didapatkan model warna yang paling optimal dan rata-rata akurasi pada Sapi Betina dan Jantan dengan ukuran citra tertentu. Model warna tersebut sangat dipengaruhi oleh kondisi data citra dan juga banyaknya kelas data.Kata kunci: Sapi Bali, Model warna , Intersection kernel, Fuzzy additive SVM, Sequential training SVM  AbstractCattle farming is identical with the selection of seeds, but the problems that often arises is how to recognize quality seeds are relatively easy, tend to take a long time. Breeders still often observe skin color with eyes directly, which tend to be less rigorous. Thus, in this study, the proposed method by using several color models that will be voted on features that are optimal in the system. Then the classification method used is Additive Fuzzy Support Vector Machine (FASVM). The data used was obtained from Livestock Breeding Center for Excellence (BPTU) Bali cattle. From the test results obtained the most optimal color models and average accuracy on Cow Females and Males with a particular image size. The color model is highly influenced by the condition of the image data and also the amount of class data. Keywords: Bali cattle, Color model , Intersection kernel, Fuzzy additive SVM, Sequential training SVM
Mendeteksi Jenis Burung Berdasarkan Pola Suaranya Setiawan, Budi Darma; Cholissodin, Imam; Putri, Rekyan Regasari Mardi
Jurnal Teknologi Informasi dan Ilmu Komputer Vol 3 No 2: Juni 2016
Publisher : Fakultas Ilmu Komputer, Universitas Brawijaya

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (1032.704 KB) | DOI: 10.25126/jtiik.201632183

Abstract

AbstrakIlmuwan biologi terutama di bidang biodifersitas, terus melakukan penelitian tentang spesies hewan yang ada di dunia. salah satu hewan yang spesiesnya memiliki banyak variasi adalah burung. Tiap jenis burung memiliki perbedaan-perbedaan, mulai dari bentuk anggota tubuhnya, prilakunya, makanannya hingga suaranya. Ilmuwan sering juga mengalami kesulitan untuk melakukan pengamatan di alam. Misalnya, untuk mengetahui spesies burung apa saja yang ada di suatu daerah, mereka harus hadir di suatu wilayah, dan menelusuri setiap pelosok. kadang kala kehadiran mereka di tempat tersebut dalam jangka waktu lama, malah mengusik burung yang ada, dan burung-burung malah pergi meninggalkan tempat, sebelum berhasil diamati. Salah satu cara untuk mendeteksi burung apa saja yang ada di suatu wilayah, tanpa harus mengusik keberadaan burung adalah dengan menggunakan alat bantu. Bisa dengan menggunakan kamera video untuk mengambil gambar lingkungan sekitar, atau dengan perekam suara, untuk merekam suara burung yang ada di sana. Untuk itu penelitian ini ditujukan untuk membuat sebuah pengklasifikasi suara burung secara otomatis. Fitur yang digunakan adalah rhythm, pitch, mean, varian, min, max, dan delta  dari suara burungnya. dari hasil klasifikasi 4 jenis burung, didapatkan hasil rata-rata akurasi terbaik sebesar 88.82%. Kata Kunci : suara burung, klasifikasi, rhythm, pitchAbstractMany of Biologi scientist, especially in the field of biodiversity, conduct research on the animal species that exist in the world. One of the animal which is largely diverse in species is bird. Each species of birds have differences, from the shape of his body, his behavior, his food to it's voice. Scientists often find it difficult to make observations in nature. For example, to determine which species of birds present in an area, they should be present in an area, and explore every corner. sometimes their presence in that place for a long time, even disturb the bird, and they leaving the place, before been observed. One way to detect any bird that is in an area, without having to disturb the presence of birds is to use the automatic tools. For example to use a video camera to take pictures of the surrounding environment, or with voice recorders to record the sound of the birds that were there. This study is aimed to create a classifier bird sound automatically. Features used are rhythm, pitch, mean, variance, min, max, and delta of the bird sound samples. of the results of the classification of four types of birds, showed the best average of accuracy is 88.82%. Key Word : bird song, classification, rhythm, pitch.
Aplikasi Mobile (Lide) Untuk Diagnosis Tingkat Resiko Penyakit Stroke Menggunakan PTVPSO-SVM Syafiq, Muhammad; Al Kadafi, Achmad Jafar; Zakiyyah, Rizka Husnun; Jauhari, Daneswara; Luqyana, Wanda Athira; Cholissodin, Imam; Muflikhah, Lailil
Jurnal Teknologi Informasi dan Ilmu Komputer Vol 3 No 2: Juni 2016
Publisher : Fakultas Ilmu Komputer, Universitas Brawijaya

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (1375.215 KB) | DOI: 10.25126/jtiik.201632190

Abstract

AbstrakPenyakit Stroke merupakan penyakit yang umum dan menduduki peringkat kedua dalam kematian di Indonesia dengan angka 11,13%. Penyakit yang mernyerang fungsi saraf otak dengan tingkat resiko bertahap. Dengan tidak hanya menyerang pada manusia usia lanjut, kini penyakit stroke dapat menyerang siapa saja. Indikator yang dapat digunakan dalam mewaspadai tingkat stroke adalah memeriksa kolestrol tubuh, HLD, LDL, dan Trigliserida. Namun faktor umum juga menjadi masalah utama namun umum. Dengan bertambahnya umum 10 tahun dimulai dari umur 55 tahun, maka tingkat resiko penyakit stroke menjadi dua kali lipat. Tingkat kewaspadaan perlu diperhatikan, sehingga dalam sewaktu-waktu untuk memeriksakan kondisi tubuh diperlukan. Lide adalah sebuah aplikasi pada smarthphone yang berbasis Android yang mengimplementasikan perhitungan algoirtma dalam menentukan tingkat resiko penyakit stroke. Lide merupakan salah satu solusi yang dibangun dalam mengontrol tingkat resiko stroke, hanya dengan memasukkan tingkat kolestrol, LDL, HDL, dan triglieserida. Dilengkapi dengan treatment bagi para pengguna, sehingga dapat melakukan penanganan awal pada tingkat-tingkat tertentu. Dalam aplikasi bergerak ini mengimplementasikan metode Particle Swarm Optimization dan Support Vector Machine untuk klasifikasi dengan menggunakan 4 fitur (kolesterol, HDL, LDL, dan Trigliserida).  Dengan menggunakan metode ini, nilai akurasi yang dihasilkan mencapai 87%.Kata kunci: Stroke, PTVPSO-SVM, Aplikasi Perangkat Bergerak, LideAbstractStroke is a common disease and was ranked second in the number of death in Indonesia with 11, 13%. This disease attacks the nerve function of brain with the level of risk. Not only attacks on old age, this disease can attacks everyone. Indicators that can be used in reasonably level stroke is cholesterol, HDL, LDL, and Triglycerides. But the common factor is also becoming a major problem, however. Increasing public 10 years starting at age 55 years, then the risk level of stroke become twice. The level of alertness to note, so in any time to check the condition of the body is required. Lide is an application on an android-based smartphone which implement algorithm calculation to determining the risk level of stroke. Lide is one of solution that is built to control the risk level of stroke, by simply entering the level of LDL, HDL, Cholesterol, and Triglycerides. It is equipped with treatment for users, so that it can perform the initial handling at certain levels. This mobile application implements the method of Particle Swarm Optimization and Supprot Vector Machine for classification by using 4 features (cholesterol, LDL, HDL, and Triglycerides). By using this method, the value of the resulting accuracy is reached 87%.Keywords: Stroke, PTVPSO-SVM, Mobile Apps, Lide
Co-Authors ., Maryamah A. N., Aditya Yudha Achmad Jafar Al Kadafi, Achmad Jafar Afida, Latansa Nurry Izza Agnes Rossi Trisna Lestari, Agnes Rossi Ahmad Afif Supianto AJI, IBRAHIM Alaydrus, Zaien Bin Umar Alexander, Mikhael Anang Hanafi, Anang Ardisa Tamara Putri, Ardisa Tamara Arief Andy Soebroto Arniantya, Raissa Asikin, Moh. Fadel Bayu Rahayudi Brigitta Ayu Kusuma Wardhany, Brigitta Ayu Kusuma Budi Darma Setiawan Caesar, Canny Amerilyse Candra Dewi Dahnial Syauqy Daisy Kurniawaty, Daisy Daneswara Jauhari, Daneswara Destyana Ellingga Pratiwi Dharmawan, Muhammad Robby Dinda Novitasari, Dinda Dyan Putri Mahardika, Dyan Putri Efi Riyandani, Efi Evanita, Felicia Marvela Fauzi, Handika Agus Fauziyah, Aprilia Nur Firmanda, Dwi Ady Firmansyah, Ilham Fitra Abdurrachman Bachtiar Ghofur, Afwan H, Luqman Hakim Hanafi, Audi Nuermey Harahap, Syazwandy Hasan, Muhammad Ismail Heru Nurwarsito Hidayatullah, Adam Syarif Husin Muhamad, Husin Idham Triatmaja, Idham Irawan, Fathony Teguh Irma Lailatul Khoiriyah, Irma Lailatul Istiana Rachmi, Istiana Jonemaro, Eriq Muhammad Adams Jupiyandi, Sisco Kartikasari, Oktavianis Ksatria, Willyan Eka Kurnianingtyas, Diva Lailil Muflikhah Latifah Hanum Listiya Surtiningsih, Listiya Luqyana, Wanda Athira M Gilvy Langgawan Putra, M Gilvy Langgawan Ma’rufi, Muhammad Rizal Mahardika, Guedho Augnifico Maria Tenika Frestantiya, Maria Tenika Mayangsari, Lintang Resita Muhammad Fhadli, Muhammad MUHAMMAD SYAFIQ Muzayyani, Muhammad Farid Najib, Mochammad Ainun Nanda Agung Putra, Nanda Agung Nur Firra Hasjidla, Nur Firra Nurul Hidayat Pardede, Andreas Prabowo, Dhimas Anjar Pramana, Firadi Surya Prasojo, Cahyo Adi Pratama, Andhica R, Bariq Najmi Rahardian, Brillian Aristyo Rahman, Edy Randy Cahya Wihandika Ratih Kartika Dewi Rekyan Regasari Mardi Putri, Rekyan Regasari Mardi Rina Christanti, Rina Rizaldi, Hilmi Ilyas Robbana, Siti Sa’rony, Akhmad Salsabila, Rona Saniputra, Fadhil Rizqullah Santoso, Nurudin Sari, Selly Kurnia Satria, Arrofi Reza Seisarrina, Maulidya Larasaty Septino, Fernando Seruni, Diajeng Sekar Sugianto, Nur Afifah Sukmawati, Annisa Sunaryo, Aryeswara Sutrisno . Sutrisno, Sutrisno Tedjasulaksana, Jeffrey Junior Tusty Nadia Maghfira, Tusty Nadia Umi Rofiqoh, Umi Uswatun Hasanah Vivien Fathuroya, Vivien Wahyuditomo, Kukuh Wicaksono Wayan Firdaus Mahmudy Whenty Ariyanti Winda Cahyaningrum, Winda Winda Estu Nurjanah, Winda Estu Wulandari, Ulfa Lina Yoga Pratama Yuniarsa, M Fahrul Alam Yusuf Priyo Anggodo, Yusuf Priyo Zakiyyah, Rizka Husnun Ziya El Arief, Ziya El Zulianur Khaqiqiyah, Zulianur Zulqornain, Junda Alfiah