Claim Missing Document
Check
Articles

Found 2 Documents
Search
Journal : Journal of Applied Data Sciences

CO2 Emission Forecasting in Indonesia Until 2030: Evaluation of ETS Smoothing Prediction Models and Their Implications for Global Climate Change Mitigation Aripiyanto, Saepul; Khairani, Dewi; Hartono, Ambran
Journal of Applied Data Sciences Vol 5, No 1: JANUARY 2024
Publisher : Bright Publisher

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.47738/jads.v5i1.154

Abstract

The objective of this study is to predict CO2 emissions in Indonesia until 2030 utilizing the ETS smoothing prediction model in line with the pressing demand for viable climate change mitigation approaches. Through an assessment of the model's efficacy, several fundamental evaluation metrics have been identified. The research findings reveal that the Mean Absolute Error (MAE) stands at 146,154.40, presenting an overview of the average absolute disparity between the projected and actual CO2 emission values. The Mean Squared Error (MSE) of 21,838,251,772.37 characterizes the mean of the squared variances between projections and actual values, gauging the variability of predictive errors. The Root Mean Squared Error (RMSE) at 147,777.71, derived from the square root of MSE, reflects the degree of uncertainty in CO2 emission predictions. Simultaneously, the Mean Absolute Percentage Error (MAPE) of 7.24% provides an overview of the average percentage of absolute discrepancies between projections and actual values. Projections suggest that CO2 emissions could potentially reach 1 million tons in 2030. This evaluation furnishes an in-depth comprehension of the precision of the ETS smoothing model in the context of substantial emission escalation. The implications on the challenges of climate change mitigation become increasingly crucial, underscoring the immediacy of preemptive measures and sustainable policies. While the model delineates emission trends, it is imperative to acknowledge that these forecasts are subject to various influences, such as policy and technological shifts. Consequently, this study underscores the necessity for heightened awareness and the formulation of more efficacious policies to address the potential surge in CO2 emissions in the forthcoming years.
Revolutionizing Digit Image Recognition: Pushing the Limits with Simple CNN and Challenging Image Augmentation Techniques on MNIST Hulliyah, Khodijah; Abu Bakar, Normi Sham Awang; Aripiyanto, Saepul; Khairani, Dewi
Journal of Applied Data Sciences Vol 4, No 3: SEPTEMBER 2023
Publisher : Bright Publisher

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.47738/jads.v4i3.104

Abstract

This study aims to apply Convolutional Neural Networks (CNN) and image augmentation techniques in digit recognition using the MNIST dataset. We built a CNN model and experimented with various image augmentation techniques to improve digit recognition accuracy. The results showed that the use of CNN with image augmentation techniques was effective in improving digit recognition performance. In the data collection stage, we used the MNIST dataset consisting of images of handwritten digits as training and testing data. After building the CNN model, we apply image augmentation techniques such as rotation, shift, and flipping to the training data to enrich the data variety and prevent overfitting. The evaluation results show that the CNN model that has been trained with image augmentation techniques produces significant accuracy, with a maximum accuracy of 99.81%. We also performed an ensemble of several CNN models and found that this approach increased the digit recognition accuracy to 99.79%. This research has the potential for further development. Recommendations for further research include exploring more specific and complex image augmentation techniques, as well as using more challenging datasets. In addition, future research may consider improvements to the CNN architecture used or combining it with other methods such as recurrent neural networks (RNN).