Claim Missing Document
Check
Articles

Sistem Informasi Layanan Konseling Berbasis Blended Learning Pada SMK PGRI Pekanbaru Junadhi Junadhi; Muhammad Syaifullah
JOISIE (Journal Of Information Systems And Informatics Engineering) Vol 3 No 1 (2019)
Publisher : Institut Bisnis dan Teknologi Pelita Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (1216.327 KB) | DOI: 10.35145/joisie.v3i1.412

Abstract

Sistem Informasi Layanan Konseling berbasis blended learning adalah layanan bimbingan dan konseling yang mengkombinasikan tiga sumber yaitu: tatap muka, offline, dan online. Penelitian ini bertujuan untuk mendeskripsikan kebutuhan siswa terhadap layanan konseling secara kombinasi (blended) untuk pengembangan karakter. Sistem yang dirancang menggunakan bahasa pemrograman PHP dan penyimpanan data dengan database MySQL. Metode yang digunakan dalam perancangan sistem ini adalah Waterfall model. Pemodelan sistem ini menggunakan bahasa UML (Unified Modelling Language). Penelitian ini dilakukan pada SMK PGRI Pekanbaru. Hasil penelitian menunjukkan bahwa penggunaan sistem informasi layanan konseling berbasis blended learning dapat membentuk karakter siswa yang dapat dikembangkan melalui beragam kegiatan dan sebagai bentuk pemberian layanan konseling modern yang menerapkan teknologi informasi yang tidak terbatas waktu dan tempat.
Evaluation of User Experience Information Systems Using Heuristic Evaluation (Case Study of STMIK Amik Riau Student Portal) Heru Satria Surya; Benino Giordiola Millenio; Junadhi Junadhi; Silvyana Dwi Putri
JURNAL TEKNOLOGI DAN OPEN SOURCE Vol 4 No 2 (2021): Jurnal Teknologi dan Open Source, December 2021
Publisher : Universitas Islam Kuantan Singingi

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.36378/jtos.v4i2.1790

Abstract

The academic information system is an important system to supports lecture activities. Is used by almost all elements in the university, both students, lecturers, staff and leaders. This research uses Heuristic Evaluation as an inference method to assess the components of learnability, efficiency, memorability, errors, and satisfaction. for various cases, such as designing academic and corporate websites with reference to these problems, it is necessary to evaluate the usability of STMIK Amik Riau information system. STMIK Amik Riau implements an integrated information system to support fast and real-time information management processes of STMIK Amik Riau information system includes various services such as E-KRS, E-KTM, E-EDOM, and other information. The aim is to identify problems related to the usability of the website. The data collection method in this research was carried out using questionnaire, containing a list of questions distributed via google form to respondents, its about 100 students of STMIK Amik Riau. Based on the analysis conducted using the Heuristic Evaluation method, the evaluation results of STMIK Amik Riau web portal have met the usability criteria with an average of 78.71915% where P > 60% and provides user satisfaction in accessing STMIK Amik Riau web portal. STMIK Amik Riau's web interface design is quite good. These results are based on the results of Likert scale score which states that the respondents agree.
WhatsApp Chat Fraud Analysis Using Support Vector Machine Method Fathur Rahman; Irfansyah Irfansyah; Rivaldi Dwi Andhika; Junadhi Junadhi
JURNAL TEKNOLOGI DAN OPEN SOURCE Vol 4 No 2 (2021): Jurnal Teknologi dan Open Source, December 2021
Publisher : Universitas Islam Kuantan Singingi

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.36378/jtos.v4i2.1791

Abstract

Fraud is one of the most cyber crime on social media. One of the popular social media in Indonesia is Whatsapp. Cases of fraud through chat on Whatsapp application often occur in Indonesia, its due to lack of information. The research conducted related to the detection of words containing fraud in WhatsApp chat application. The methods in this research applies the literature study method to find secondary data in the references theories and relevant research. The data collection is carried out by collecting chats that lead to fraud cases and then processing them using RapidMiner application with SVM (Support Vector Mechine) method. The results of this research can be concluded that this research succeeded in implementing SVM algorithm for whatsapp fraud chat analysis with an accuracy rate of 84.21%
Sistem Layanan Informasi Lapor Prestasi Mahasiswa STMIK Amik Riau Junadhi Junadhi
Jurnal Inovtek Polbeng Seri Informatika Vol 4, No 1 (2019)
Publisher : P3M Politeknik Negeri Bengkalis

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (529.729 KB) | DOI: 10.35314/isi.v4i1.711

Abstract

Metode Rapid Application Developmentsesuai untuk menghasilkan sistem perangkat lunak perniagaan elektronikkarena memiliki sistem yang dinamis, fleksibel, melibatkan pengguna secara langsung danperancangan sistem tidak membutuhkan waktu yang lama.Metode RAD memiliki sejumlah tahapan, yang diawali dengan tahap perencanaan syarat kebutuhan sistem,melibatkan pengguna untuk merancang dan membangun sistem (kegiatan ini dilakukan secaraberulang-ulang hingga mencapai kesepakatan bersama), dan terakhir tahap implementasi. Kebutuhan ini selaras dengan tujuan penelitian yaitu menghasilkan sistem informasi lapor prestasi mahasiswa yang mudah digunakan oleh mahasiswa dan memudahkan bidang kemahasiswaan dalam mengelola data prestasi mahasiswa. Hasil penelitian memperlihatkan sistem perangkat lunak lapor prestasi mahasiswa ini dapat menjadi terobosan baru dalam cara dan mekanisme berinteraksidengan mahasiswa,aliran informasi menjadi lebih interaktif dan transparan,kemudahandalam melaporkan prestasi tanpaterkendala waktu dan tempat.Sistem informasi lapor prestasi mahasiswa berbasis web yang dibangun memiliki fasilitas-fasilitas berupa penyimpanan data prestasi mahasiswa, pemberitaan, grafik perolehan prestasi mahasiswa per semester, dan informasi perlombaan. Hasil penelitian memberikan kemudahan bagi bidang kemahasiswaan mendapatkan informasi prestasi mahasiswa yangdisajikan dalam bentukgrafik, sehingga data tersebut dapat digunakan untukpelaporan Pemeringkatan Kemahasiswaan Kemenristekdikti dan kebutuhan lainnya.
LINE Chatbot Informasi Cuaca Wilayah Indonesia Junadhi; Mardainis
Digital Zone: Jurnal Teknologi Informasi dan Komunikasi Vol. 10 No. 1 (2019): Digital Zone: Jurnal Teknologi Informasi dan Komunikasi
Publisher : Publisher: Fakultas Ilmu Komputer, Institution: Universitas Lancang Kuning

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (458.896 KB) | DOI: 10.31849/digitalzone.v10i1.2467

Abstract

Saat ini tingkat mobilisasi masyarakat dari suatu daerah ke daerah lain sangat tinggi, hal ini didukung oleh infrastruktur yang baik seperti jalan dan moda transportasi yang sudah baik. Pada waktu hari libur kerja ada tren yang berkembang di tengah masyarakat untuk memanfaatkannya pergi berwisata kedaerah lain, baik itu dalam provinsi maupun luar provinsi.Persiapan yang harus dilakukan sebelum keberangkatan disesuaikan dengan lama waktu bepergian, baik itu pakaian dan lain lain. Hal yang tidak kalah pentingnya adalah mengetahui situasi dan cuaca di daerah yang dituju dan daerah daerah yang akan dilewati selama perjalanan. Biasa kendala perjalanan bisa berupa banjir, angin ribut dan tanah longsor.Jika kita sudah mengetahui situasi cuaca di daerah yang akan dituju dan daerah daerah yang akan dilewati selama perjalanan, kita akan mudah memutuskan apakah jadi berangkat atau tidak, ataupun mempersiapkan diri untuk mengantisifasi keadaan yang akan terjadi.Penelitian ini memberikan kemudahan bagi pemakai untuk mengetahui cuaca suatu daerah hanya dengan membuka aplikasi chatbot yang digunakan diatas aplikasi sosmed LINE.
Deteksi Dini Penyakit Diabetes Menggunakan Machine Learning dengan Algoritma Logistic Regression Erlin; Yulvia Nora Marlim; Junadhi; Laili Suryati; Nova Agustina
Jurnal Nasional Teknik Elektro dan Teknologi Informasi Vol 11 No 2: Mei 2022
Publisher : Departemen Teknik Elektro dan Teknologi Informasi, Fakultas Teknik, Universitas Gadjah Mada

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (1372.072 KB) | DOI: 10.22146/jnteti.v11i2.3586

Abstract

Diabetes is one of the deadliest diseases in the world, including in Indonesia. It can cause complications in numerous body parts and increase the overall risk of death. One way to detect diabetes is to use machine learning algorithms. Logistic regression is a classification model in machine learning widely used in clinical analysis. In this paper, a predictive model was created in Python IDE using logistic regression to conduct an early detection if a person has diabetes or not depending on the initial data provided. The experiment was carried out using a dataset from the Pima Indians Diabetes Database, which consisted of 768 patient data with eight independent variables and one dependent variable. Exploratory data analysis was applied to obtain maximum insight of the datasets owned by using statistical assistance and presenting them through visual techniques. Some dataset variables contained incomplete data. Missing data values were replaced with the median value of each variable. Unbalanced data was handled using the synthetic minority over-sampling technique (SMOTE) to increase the minority class through synthetic data sampling. The model was evaluated based on the confusion matrix, which showed a reasonably good performance with an accuracy value of 77%, precision of 75%, recall of 77%, and F1-score of 76%. In addition, this paper also used the grid search technique as a hyperparameter tuning that could improve the performance of the logistic regression model. The primary model performance with the model after applying the grid search technique was tested and evaluated. The experimental results showed that the hyperparameter tuning-based model could improve the performance of the logistic regression algorithm for prediction with an accuracy value of 82%, precision of 81%, recall of 79%, and F1-score of 80%.
Implementation of K-Means Clustering Algorithm for Grouping Traffic Violation Levels in Siak Bias Arbi Fauzan; M Jamaris; Junadhi Junadhi
JURNAL TEKNOLOGI DAN OPEN SOURCE Vol 5 No 1 (2022): Jurnal Teknologi dan Open Source, June 2022
Publisher : Universitas Islam Kuantan Singingi

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.36378/jtos.v5i1.2427

Abstract

Traffic offences often occur in different regions, ranging from mild to moderate to severe. The categories of offences include not carrying a Driver's Licence, stnk (Vehicle Number Certificate) or stck (Vehicle Trial Certificate) is invalid, not wearing a seat belt, not turning on headlights during the day and under certain conditions, disobeying traffic signs, disobeying traffic signals. Moderate offences include not having a Driver's Licence, not concentrating while driving and breaking the door of the drawbar. Serious violations include deviating from other vehicles on the road, damaging and interfering with road functions, not insuring one's own responsibility and not insuring staff and passengers. In this study, the K-Means algorithm was used with the aim of obtaining information on data groups of traffic violations based on the time of the incident so that the cause of the traffic violations that occurred in Tasikmalaya City is known. Based on the validation with Davies Bouldin Index metric, 4 clusters were identified which can group the data well. The PerformanceVector results from the assessment of the clusters resulted in 4 clusters with a value of 0.134. Cluster 1 with the most data violations amounting to 74 violations occurred at night, Cluster 2 with the most violations amounting to 16 violations occurred during the day, Cluster 3 with the most violations amounting to 6 violations occurred in the afternoon and Cluster 4 with the most violations amounting to 113 violations occurred in the morning.
Prediksi Penambahan Piutang Iuran Jaminan Sosial Ketenagakerjaan menggunakan Algoritma K-Nearest Neighbor Devi Efriadi; Rahmaddeni Rahmaddeni; Agustin Agustin; Junadhi Junadhi
Jurnal Pendidikan Informatika (EDUMATIC) Vol 6, No 1 (2022): Edumatic: Jurnal Pendidikan Informatika
Publisher : Universitas Hamzanwadi

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.29408/edumatic.v6i1.5255

Abstract

There are several issues with Social Security Organizing Agency (BPJS) employment at the moment, one of which is contribution receivable. To reduce the BPJS contribution receivables, BPJS has done various ways. However, the resulting effort is not maximal enough to reduce the number of receivables in BPJS. This study aims to provide input by predicting the addition of receivables from social security contributions made by several companies or organizations. This study used the K-Nearest Neighbor (KNN) Algorithm with a cross-validation technique. KNN is a very simple classification method in classifying an image based on the closest distance to its neighbors. This study conducted data processing from BPJS use, which amounted to 1193 data. The data is then preprocessed so that the processed data is clean from missing and noise, this data uses 70:30 data splitting. After the preprocessing and splitting of data were carried out, the next step was to do modeling using KNN, so the cross-validation to improve the accuracy of results obtained from the KNN algorithm. The results obtained from this research get the highest accuracy of 92% with the Optimal K value being 6, then the ROC curve gets 94% accuracy. From these results, it can be said that the use of cross-validation can increase the accuracy of this study.
Sistem Pakar Kelayakan Perizinan pada Dinas Penanaman Modal dan Pelayanan Terpadu Satu Pintu Menggunakan Metode Forward Chaining Nanang Susanto; Junadhi; Helda Yenni; M Jamaris
Jurnal JTIK (Jurnal Teknologi Informasi dan Komunikasi) Vol 6 No 4 (2022): OCTOBER-DECEMBER 2022
Publisher : KITA Institute

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.35870/jtik.v6i4.610

Abstract

Efforts to increase investment in the regions need to be carried out with intensification and extensification activities, improving the implementation of excellent services through the formulation of strategic planning. Policies in the investment sector are basically aimed at increasing the ability of the regions to invite investors to enter the city of Medan. So far, the process of granting permission is by registering by filling out the form and uploading the required files, then the team will verify the files manually, this kind of work is considered less effective because it takes quite a long time. Likewise, the central government often changes regulations related to financial management, licensing, investment-related aspects, so that the regions must immediately adapt to the new regulations. The system process that uses the forward chaining method is by solving problems that are tracked based on existing facts until conformity is found based on the Rules that are formed until conclusions are found. The research that has been done can be concluded that the Expert System using the forward chaining method which is applied to the system in determining the feasibility of licensing is good enough to be applied because it can help the community, the investment office in determining the feasibility of the proposed business through the system. This expert system also provides information on recommendations for improvement to people who submit but are not yet eligible, so that they can easily adjust the conditions, facilities, and other supports to the standards made by the government.
Analisis Sentimen Menggunakan Support Vector Machine Masyarakat Indonesia Di Twitter Terkait Bjorka Adhitya Karel Maulaya; Junadhi
Jurnal CoSciTech (Computer Science and Information Technology) Vol 3 No 3 (2022): Jurnal Computer Science and Information Technology (CoSciTech)
Publisher : Universitas Muhammadiyah Riau

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.37859/coscitech.v3i3.4358

Abstract

Belum lama ini seorang hacker bersamarkan nama bjorka menjadi pembahasan hangat pada media sosial. Dikarenakan gerakannya meretas beraneka macam data pribadi pada kalangan masyarakat sekalipun dokumen pemerintah yang sering sebagai tujuan aksinya. Terlebih sebagian besar dokumen diduga kepemilikan Presiden Indonesia Joko Widodo telah dibongkar. Gerakan hacker bersamarkan nama Bjorka membongkar data pribadi kepemilikan pemerintah juga meraih dukungan dari sebagian besar warga netizen pada media sosial. Pada kasus ini penulis memakai metode Support Vector Machine guna menghasilkan tahapan optimal. Seiring meningkatnya penggunaan Twitter, media sosial yang berkomputasi dengan waktu nyata terhadap masyarakat mampu mengirimkan berbagai ungkapan maupun tanggapannya pada aksi yang dilakukan oleh bjorka, perlu dirancangnya sistem yang sanggup mengklasifikasi sejumlah cuitan berbobotkan opini mengarah pada suatu kelas, tergolong positif, negatif dan netral.