Claim Missing Document
Check
Articles

Found 25 Documents
Search

PENGENALAN TEKNOLOGI ENERGI TERBARUKAN PANEL SURYA UNTUK SISWA SEKOLAH MENENGAH PERTAMA (SMP) Maghfiroh, Hari; Adriyanto, Feri; Slamet Saputro, Joko; Sujono, Augustinus; Lambang GH, R.Lulus
INTEGRITAS : Jurnal Pengabdian Vol 6 No 2 (2022): AGUSTUS - DESEMBER
Publisher : Lembaga Penelitian dan Pengabdian kepada Masyarakat - Universitas Abdurachman Saleh Situbondo

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.36841/integritas.v6i2.1527

Abstract

Saat ini listrik menjadi kebutuhan utama masyarakat. Pembangkit listrik di Indonesia sebagain besar bersumber dari energi batu bara yakni mencapai 57.2%. Batu bara sendiri merupakan sumber energi yang tidak bisa diperbaruhi. Selain itu, pembangkit listrik jenis ini menimbulkan pencemaran udara. Untuk itu, sumber pembangkit listrik alternatif yang ramah lingkungan dan dengan suplay yang melimpah sangat diperlukan. Salah satu sumber listrik alternatif yang paling mudah untuk dibangun dengan biaya rendah adalah sistem panel surya. Sistem panel surya sudah banyak diaplikasikan di Indonesia, bahkan sudah dibangun Pembangkit Listrik Tenaga Surya (PLTS). Beberapa tempat yang sudah terpasang sistem panel surya, pada akhirnya terbengkalai karena rusak dan masyarakat belum begitu faham sistem panel surya sehingga tidak bisa memperbaikinya. Untuk itu, sosialisasi tentang energi terbarukan ini penting untuk dilaksanakan. Pengenalan sumber energi terbarukan tenaga surya ini perlu dikenalkan lebih dini kepada siswa sekolah untuk meningkatkan minat dan rasa ingin tahu siswa dalam mempelajari, memanfaatkan, dan bahkan mengembangkan nantinya. Kegiatan dilakukan secara daring guna mematuhi protokol kesehatan covid-19. Media yang dipakai adalah grup whatsapp, video, dan e-booklet. Untuk mengukur keberhasilan program, sebelum acara dilakukan pre-test dengan hasil 22, 5% siswa tidak tahu tentang panel surya. Setalah sosialisasi post-test, hasilnya rata-rata nilai mencapai 79,46%, yang menunjukkan tingkat pamahaman peserta cukup baik terhadap materi yang disampaikan. Sampel pertanyaan mendasar tentang sistem panel surya, menunjukkan hanya 0,9% siswa yang salah. Kesimpulan akhir, siswa telah mendapat pengetahuan tentang energi terbarukan panel surya melalui kegiatan sosialisasi yang telah dilakukan.
Path Planning for Mobile Robots on Dynamic Environmental Obstacles Using PSO Optimization Fahmizal, Fahmizal; Danarastri, Innes; Arrofiq, Muhammad; Maghfiroh, Hari; Probo Santoso, Henry; Anugrah, Pinto; Molla, Atinkut
Jurnal Ilmiah Teknik Elektro Komputer dan Informatika Vol. 10 No. 1 (2024): March
Publisher : Universitas Ahmad Dahlan

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.26555/jiteki.v10i1.28513

Abstract

The increasing integration of mobile robots in various industries necessitates efficient navigation strategies amidst dynamic environments. Path planning plays a crucial role in guiding mobile robots from their starting points to target destinations, contributing to automation and enhancing human-robot collaboration. This study focuses on devising a tailored path-planning approach for a fleet of mobile robots to navigate through dynamic obstacles and reach designated trajectories efficiently. Leveraging particle swarm optimization (PSO), our methodology optimizes the path while considering real-time environmental changes. We present a simulation-based implementation of the algorithm, where each robot maintains position, velocity, cost, and personal best information to converge towards the global optimal solution. Different obstacles consist of circles, squares, rectangles, and triangles with various colors and five handle-points used. Our findings demonstrate that PSO achieves a global best cost of 5.1017, indicative of the most efficient path, minimizing overall distance traveled.
Control and Navigation of Differential Drive Mobile Robot with PID and Hector SLAM: Simulation and Implementation Fahmizal, Fahmizal; Pratikno, Matthew Sebastian; Isnianto, Hidayat Nur; Mayub, Afrizal; Maghfiroh, Hari; Anugrah, Pinto
Jurnal Ilmiah Teknik Elektro Komputer dan Informatika Vol. 10 No. 3 (2024): September
Publisher : Universitas Ahmad Dahlan

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.26555/jiteki.v10i3.29428

Abstract

Navigation technology is essential in fields like transportation and logistics, where precise mapping and localization are critical. Simultaneous Localization and Mapping (SLAM) technologies, such as Hector SLAM, enable robots to map environments by detecting and predicting object locations using sensors like LiDAR. Unlike other SLAM methods, Hector SLAM operates without odometry, relying solely on LiDAR data to produce accurate maps. This study investigates the application of Hector SLAM in a differential drive mobile robot controlled via the Robot Operating System (ROS), with PID control managing the motor speeds. The research contribution is the integration of Hector SLAM with PID control to enhance mapping accuracy in environments without odometry data. The method involves testing the robot's mapping performance in an indoor environment, focusing on the impact of varying linear and angular velocities on the quality of the generated maps. The PID control was tuned to ensure stable speed values for the robot's differential drive motors. Results show that Hector SLAM, when combined with well-tuned PID control, generates highly accurate maps that closely match the actual environment dimensions, with minimal errors. Specifically, the mapping error was found to be within 0.10 meters, validating the effectiveness of this approach in non-odometric systems. In conclusion, the study demonstrates that Hector SLAM, supported by PID-controlled motor stability, is an effective solution for mapping in differential drive mobile robots, particularly in scenarios where odometry is unavailable.
Prototipe Automatic Feeder dengan Monitoring IoT untuk Perikanan Bioflok Lele Maghfiroh, Hari; Hermanu, Chico; Adriyanto, Feri
Electrician : Jurnal Rekayasa dan Teknologi Elektro Vol. 15 No. 1 (2021)
Publisher : Department of Electrical Engineering, Faculty of Engineering, Universitas Lampung

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.23960/elc.v15n1.2160

Abstract

Revolusi Industri 4.0 telah banyak membawa banyak perubahan baik itu positif maupun negartif. Segi positifnya yaitu telah banyak dipakainya otomasi dan robot di dunia industri sehingga produksi bisa meningkat pesat. Sedangkan sudut negatif, semakin banyaknya pekerjaan manusia yang tergantikan oleh mesin sehingga memperkecil peluang kerja. Adanya revolusi industri 4.0 juga membawa kesenjangan antara kelompok melek teknologi dan kelompok gagap teknologi (gaptek). Warga kampung atau desa merupakan kelompok besar dari golongan gaptek. Untuk itu, suatu peluang usaha baru yang dapat dikerjakan msyarakat desa dengan tingkat pendidikan menengah sangat diperlukan. Maka dipilihlah program perikanan bioflok lele. Sentuhan teknologi otomasi dan Internet of Things (IoT) diberikan untuk meningkatkan produktivitas dan membuat masyarakat melek akan perkembangan teknologi era revolusi industry 4.0.
Ball Detection System for a Soccer on Wheeled Robot Using the MobileNetV2 SSD Method Puriyanto, Riky D.; Yunandha, Isro D.; Maghfiroh, Hari; Ma'arif, Alfian; Furizal; Suwarno, Iswanto
Emerging Science Journal Vol. 9 No. 5 (2025): October
Publisher : Ital Publication

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.28991/ESJ-2025-09-05-028

Abstract

This paper discusses the research on the use of Artificial Intelligence in autonomous robot object identification. The specific focus of this research is on a wheeled soccer playing robot. The goal is to recognize a ball as an object using the Single Shot MultiBox Detector MobileNetV2 model. This system has multi-vision inputs such as distance measurements and angle values ​​for object detection. This methodology is based on deep learning with the TensorFlow Object Detection API with the MobileNetV2 SSD model. This model is trained with a dataset of 3707 ball images over 617 thousand steps on Google Collaboratory. It was found that the average measurement error of the ball object is 6.58% for the distance when viewed through the robot's front camera. In addition, the omnidirectional camera is able to detect the ball object and angle values ​​from the front of the robot. What makes this research different is the use of distance and angle measurements for detection and the omnidirectional camera for system performance in dynamic environments. This research aims to address the improvement of AI-based object detection systems for autonomous robotics in the context of real-world use cases.