Claim Missing Document
Check
Articles

Found 2 Documents
Search
Journal : Science and Technology Indonesia

Liposome Photosensitizer with Enzyme from Black Soybean Tempeh: Formula Optimization and In Vitro Thrombolytic Activity Evaluation Azzahra, Farah Daffa; Mulyani, Laida Neti; Sabrina, Tia; Fithri, Najma Annuria
Science and Technology Indonesia Vol. 10 No. 3 (2025): July
Publisher : Research Center of Inorganic Materials and Coordination Complexes, FMIPA Universitas Sriwijaya

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.26554/sti.2025.10.3.903-915

Abstract

Stroke and myocardial infarction contributed significantly as the leading causes of global mortality rate, both commonly caused by thrombosis. Black soybean tempeh (BSBT), a traditional Indonesian food fermented with Rhizopus oligosporus fungus is rich in proteolytic enzymes, with potential to be utilized for thrombosis related ailments. Herein, we report the first findings of BSBT enzymatic activity and its subsequent formulation into liposomal system as a thrombolytic. Additionally, we incorporated photosensitizer dyes into the liposomes, phycocyanin and fluoresecein, creating a photothermally active therapeutic delivery system. Liposomes containing BSBTwere formulated using soy lecithin and tween 80, whichwere then subjected to evaluations including size, PDI, zeta potential, morphological, and stability studies. Furthermore, we observed their photothermal efficiency and thrombolytic activity using whole blood clot in vitro model. BSBT crude and purified extract produced satisfactory enzymatic activity, stable at neutral pH (∼7) and maintained stable activity at temperatures of ∼60◦C. Liposome formulation was spherical with a particle size of 607.8 nm; PDI of 0.339; and zeta potential of -24.2 mV. BSBT crude extract and purified enzyme at a concentration of 100% gave 51.28 and 56.05% thrombolytic activity. Based on the test results obtained, the optimum formula of photosensitizer liposomes produced had high encapsulation efficiency, with photothermal efficiency of 57.66 and 44.23% for Lip-Flu and Lip-Phy respectively. The formulations with laser exposure generated good thrombolytic activity (∼55-56%) comparable with nattokinase. Based on these findings, liposomal delivery of BSBT enzymes can maintain proteolytic activity, providing the first insights for thrombolytic purposes of BSBT enzymes.
Cogon Grass Mesoporous Silica Nanoparticles Loaded with Uncaria gambir Extract and Photosensitizer for Photothermal Induced Anti-MRSA Activity: Formula Optimization and In Silico Exploration Mardiyanto; Sabrina, Tia; Alhafizh, M. Faris; Kota, Natacha Brigida; Ramadhona, Sheza Inayah; Valenia, Novella; Amrullah, M. Ammar; Zulda, Daghfal Rafataqwa; Marrisca, R.D. Nindi; Alisyahbana, Sutan Satya; Fadilah, Ade; Pratiwi, Aisyah; Fithri, Najma Annuria
Science and Technology Indonesia Vol. 11 No. 1 (2026): January
Publisher : Research Center of Inorganic Materials and Coordination Complexes, FMIPA Universitas Sriwijaya

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.26554/sti.2026.11.1.311-322

Abstract

In recent years antimicrobial resistance (AMR) has grown to become a massive concern for the global community due to their lack of successful prevention and low recovery rates. One of methods with high efficiency in reducing AMR is photodynamic and photothermal therapy (PDPT), due to their independency from chemical mechanism of antimicrobial efficacy. Mesoporous silica nanoparticle (MSN) is an excellent carrier for potential alternative for AMR including photosensitizers and natural based active ingredients. Herein, we explored the use of various sources as silica precursors as well as optimization based on method of fabrication and coating agent to stabilize and load the active ingredients. We additionally incorporated Uncaria gambir extract and phycocyanin to increase MSN antimicrobial effect and photosensitizing ability. Cogon grass-based MSN (CG-MSN) has yet to be explored extensively and in this research, we compared their characteristics to a more established precursors such as tetraethyl orthosilicate (TEOS) and sodium silicate. Based on the results obtained, cogon grass-based precursors produced the highest yield, with entrapment efficiency of Uncaria gambir and phycocyanin as high as 98%. Furthermore, CG-MSN produced one of the highest photothermal increase and adsorption rate comparable to that of TEOS. From in silico exploration Uncaria gambir contained Gambiriin and Roxburghin as two of the most active phytoconstituents that influenced its antimicrobial activity. Based on this research we were able to synthesize a new precursor of silica from natural based product, cogon grass, and incorporate it as carrier for phytocompounds in the management of AMR.