Claim Missing Document
Check
Articles

THE OPPORTUNITIES FOR MSMEs IN THE INDUSTRIAL TECHNOLOGY RZ Abdul Aziz
Prosiding International conference on Information Technology and Business (ICITB) 2019: INTERNATIONAL CONFERENCE ON INFORMATION TECHNOLOGY AND BUSINESS (ICITB) 5
Publisher : Proceeding International Conference on Information Technology and Business

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

Industrials Revolution 4.0 is an opportunity for Indonesia to increase economic growth. Economic growth can be conducted by increasing the number of Micro Small and Medium Enterprises (MSMEs). Moreover, MSMEs is involved by the digital economy through broadband, electronic business (e-commerce), social media, cloud technology, and cellular platforms. Therefore, MSMEs can grow faster and improve, give excellent services and products, and become more innovative and competitive so that productivity also increases. This is able to be an opportunity to change the processes and capture new opportunities in the market. One way to capture these opportunities is to produce good products and give excellence services. The implementation of TQM and quality assurance systems, with Quality Control Circle (QCC) or Quality Control (QC), has a significant impact on the quality of products and services which are produced by MSMEs. TQM will deliver companies to world-class services by providing good products and services so that it can make customers satisfaction. Improving quality and service can be supplemented by improving efficiency and productivity. Furthermore, companies engaged in the business sector have the main orientation on achieving the highest possible profit margins (Profit Oriented). Therefore, the collection of data in the current digital economy is the basis of all businesses in this modern era. These efforts can be done by way of more socializing big data at MSMEs. Finally, technology adoption will improve business performance. MSMEs owners and managers must develop strategies to improve efficiency, reduce costs, and get new customers, build websites, and utilize digital technology to conduct market expansion and increased sales through the Digital Economy Era.Keywords: TQM, QCC, Technology, Digital Economy, Big Data
AUDIT OF INFORMATION SYSTEM USING COBIT 5.0 AND ITIL V3 FOR INFORMATION SYSTEM OF ACADEMIC Rini Nur Listiani; R.Z Abdul Aziz
Prosiding International conference on Information Technology and Business (ICITB) 2018: INTERNATIONAL CONFERENCE ON INFORMATION TECHNOLOGY AND BUSINESS (ICITB) 4
Publisher : Proceeding International Conference on Information Technology and Business

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

Information Technology (IT) is very important for sustainability and business growth. Dependence on IT requires special attention to governance which consists of leadership, organizational structure, and processes. it ensure that IT in the organization not only develops, but also sustains the company's strategy and goals. Informatics and Business Institute Darmajaya is one of the private universities in Bandar Lampung that utilizes IT in carrying out academic activities, one of which is by using the Information System of Academic (SISKA). In the implementation of good SISKA, an audit of information system needed to improve the performance of the system. In this study, audit for information system of academic used Control Objective for Information and related Technology (COBIT 5.0) on domains DSS01-DSS06, MEA-01, APO-12, and APO-13, as well as other references to determine improvement suggestions by adding the Information Processing Infrastructure Library (ITIL V3) on the domain process of Service Operation and Service Design processes as a framework. This study was used to evaluate the governance information systems of academic at Darmajaya to produce some recommendations for improvement. The results was used to provide recommendations for improvements to the information technology governance of SISKA IIB Darmajaya. For measure, this study using addition validity and reliability with SPSS tools to testing produce appropriate improvements for IT governance.Keywords: Audit of Information System, COBIT 5.0, ITIL V3, IT Governance.
Detection of learning styles with prior knowledge data using the SVM, K-NN and Naïve Bayes algorithms Muhammad Said Hasibuan; RZ Abdul Aziz
JURNAL INFOTEL Vol 14 No 3 (2022): August 2022
Publisher : LPPM INSTITUT TEKNOLOGI TELKOM PURWOKERTO

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.20895/infotel.v14i3.788

Abstract

The two types of automatic learning style detection approaches are data driven (DD) and literature based (LB). Both methods of automatic learning style detection have advantages over traditional learning style detection methods because they use external data sources, such as forums, quizzes and views of teaching materials, that are more accurate than the questionnaires used in traditional styles of detection. The results of automatic detection, on the other hand, do not always reflect learning styles. This paper presents a learning style recognition method that uses data from the learner’s internal source, namely prior knowledge, to overcome these challenges. Prior knowledge is proposed because it is based on the learner’s knowledge or skills, which better reflect the learner’s characteristics, rather than on the learner’s behaviour, which tends to be dynamic. By using past knowledge, this paper presents a method for detecting automatic learning patterns. The learning style detection framework is unique in that it consists of three stages: prior knowledge question development, prior knowledge measurement and learning style detection using the Support Vector Machine (SVM), Naïve Bayes and K-Nearest Neighbour (K-NN) classification methods. The accuracy of learning style detection using prior knowledge data was higher than detection results using behavioural data or hybrid data (prior knowledge + behaviour) in this study
Prediksi Kejadian Banjir Di Kota Bandar Lampung Menggunakan Jaringan Syaraf Tiruan Ramadhan Nurpambudi; Eka Suci Puspita Wulandari; RZ. Abdul Aziz
JURNAL INFOTEL Vol 15 No 1 (2023): February 2023
Publisher : LPPM INSTITUT TEKNOLOGI TELKOM PURWOKERTO

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.20895/infotel.v15i1.878

Abstract

The city of Bandar Lampung is currently experiencing seasonal flooding which occurs almost every year, resulting in significant losses. Floods recorded by BNPB in the last 10 years there were 16 incidents of flooding in the Bandar Lampung area. More than 14,000 people suffered, more than 500 people had to be evacuated, more than 900 houses were damaged, and 4 public facilities were damaged. To study the pattern of flood events in the past, the Artificial Neural Network Backpropagation learning method will be used which will utilize its non-linear variable learning abilities. The configuration settings for the Artificial Neural Network were carried out experimentally without any basis for assigning values, especially for the parameters of the number of hidden layers, number of neurons, and epochs used in training and variable testing. The results obtained from this study are the results of training and testing of datasets that have been carried out by ANN backpropagation are able to properly study patterns of flood events and also non-flood events in the dataset, this is evidenced by the results of high model configuration accuracy and also the results of predictive tables that able to describe actual conditions, setting the configuration model experimentally is able to produce an accuracy value of 90-100%, an average training correlation value of 0.96 and an average test correlation value of 0.89, and an average error value of 0.0089 out of 20 model configuration, and the flood prediction table are made based on the 1 best configuration with a training and testing accuracy rate of 100% with an error value of 0.00134, namely configuration model 20, the prediction table uses an average air temperature of 27˚C with 80% humidity. The prediction table is able to produce excellent flood potential results which are able to represent flood events as well as non-flood events based on the results of the dataset learning.
Model Prediksi Dengan Artificial Neural Network Untuk Kejadian Banjir Rob Di Wilayah Pesisir Kota Bandar Lampung Eka Suci Puspita Wulandari; Ramadhan Nurpambudi; RZ. Abdul Aziz
JURNAL INFOTEL Vol 15 No 2 (2023): May 2023
Publisher : LPPM INSTITUT TEKNOLOGI TELKOM PURWOKERTO

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.20895/infotel.v15i2.882

Abstract

The fastest sea level rise began in 2013 and reached its highest level in 2021. This is part of the ongoing global warming impact, where polar ice continues to melt, glaciers also continue to melt, causing sea level rise. In the Bandar Lampung City area, there are several areas that are threatened with tidal flooding, namely Karang City Village and Kangkung Village, Bumi Waras Village, and Sukaraja Village. Bandar Lampung itself is the city center in the coastal area. Where the majority of the population is in the Coastal area so that the threat of tidal flooding is caused by rising sea levels. To study the occurrence of tidal floods in the past, this research uses an Artificial Neural Network which has the ability to study non-linear data which is then carried out by training and testing until the best configuration model is obtained. Based on the analysis and discussion that has been carried out, several important points can be drawn, including the results of training and dataset testing that has been carried out. , 80:20, and 90;10. This is evidenced by the results of the high accuracy of the model configuration and also the results of the prediction table which is able to describe the actual conditions, setting the model configuration experimentally is able to produce the best training accuracy value reaching 100% while for the best testing accuracy is 88%. The average correlation value of training with the 50:50 dataset is 0.975, the 60:40 dataset is 0.975, the 70:30 dataset is 0.951, the 80:20 dataset is 0.935, and the 90:10 dataset is 0.929. For the average value of the correlation test with the 50:50 dataset of 0.514, the 60:40 dataset is 0.362, the 70:30 dataset is 0.488, the 80:20 dataset is 0.284, and the 90:10 dataset is 0.402. Whereas the average error value for the 50:50 dataset is 0.006, the 60:40 dataset is 0.006, the 70:30 dataset is 0.010, the 80:20 dataset is 0.007, and the 90:10 dataset is 0.007, the flood prediction table is made based on 1 configuration the best with a training accuracy rate of 98% and a testing accuracy of 80% with an error value of 0.004, namely configuration model 14, this model is the best configuration model out of 3 dataset divisions out of a total of 5. The prediction table uses sea level tides of 1.5 meters. The prediction table is able to provide good tidal flood percentage values, especially when there are active astronomical phenomena. The results of this good flood prediction table illustrate that the backpropagation ANN is able to study datasets well and can be used by BMKG forecasters in making tidal flood early warnings.
Perbandingan Prediksi Penyakit Stunting Balita Menggunakan Algoritma Support Vektor Machine dan Random Forest Wiratama, Yunada; Aziz, RZ Abdul
Building of Informatics, Technology and Science (BITS) Vol 6 No 2 (2024): September 2024
Publisher : Forum Kerjasama Pendidikan Tinggi

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.47065/bits.v6i2.5543

Abstract

Stunting in toddlers is a serious health problem, especially in developing countries, where toddlers experience stunted growth due to chronic malnutrition. This condition not only affects the child's height but also their cognitive development and overall health. Identifying risk factors and classifying stunting can help in addressing and preventing this issue. In this study, we applied two machine learning methods to compare which one performs better in classification, namely Random Forest and Support Vector Machine (SVM), to classify stunting in toddlers. The data used is public data consisting of 97,873 entries. After undergoing preprocessing steps such as data cleaning, normalization, and splitting, the data was divided into training and testing sets. The Random Forest and SVM models were then trained using the training set and evaluated using metrics such as accuracy, precision, and recall. The analysis results showed that both methods perform well in classifying stunting in toddlers, with Random Forest achieving an accuracy of 0.9997 and SVM achieving an accuracy of 0.9951. These findings are expected to aid in the development of more effective intervention strategies to address stunting in toddlers. With this approach, it is hoped to make a significant contribution to reducing the prevalence of stunting in developing countries and improving the quality of life for children in the future. Additionally, this research opens opportunities for further exploration of other machine learning techniques for other health issues.
IMPLEMENTASI METODE REGRESI LINIER BERGANDA UNTUK ESTIMASI PENYAKIT GANODERMA DI PT NAKAU ., Kurniawati; Mawarni, Rima; ., Sriyanto; Aziz, RZ Abdul
Jurnal informasi dan komputer Vol 11 No 02 (2023): Jurnal Informasi dan Komputer yang terbit pada tahun 2023 pada bulan 10 (Oktobe
Publisher : LPPM Institut Teknologi Bisnis Dan Bahasa Dian Cipta Cendikia

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.35959/jik.v11i02.538

Abstract

Sektor pertanian di Indonesia dibedakan menjadi tiga jenis yaitu perkebunan, sawah dan ladang. Dari ketiga jenis sektor pertanian, sektor perkebunan yang lebih banyak diminati dikarenakan pertanian jenis perkebunan cenderung memiliki nilai jual yang tinggi, pembudidayaan dalam skala besar, serta daya tariknya yang terus meningkat. Sektor tanaman perkebunan di Indonesia banyak didominasi oleh tanaman kelapa sawit, kakao, karet, tebu dan kopi, dari kelima tanaman ini kelapa sawit yang paling menguntungkan. PT. Nakau merupakan perusahaan yang tergolong dalam jenis perkebunan besar swasta (PBS) ini mulai melakukan proses penanaman kelapa sawit pada tahun 1999 sampai tahun 2011 dan melakukan tahap produksi ditahun 2004 hingga sekarang. Peneliti ini bertujuan untuk mengetahui perhitungan estimasi penyakit ganoderma menggunakan metode regresi linier berganda dengan aplikasi excel dan Rapidminer pada tahun 2021. Dan untuk menganalisa hasil perhitungan metode regresi linier berganda, sehingga dapat diketahui prediksi penyakit ganoderma dan dapat dilakukan perawatan sejak dini sehingga dapat mengoptimalkan produksi kelapa sawit pada PT Nakau. Hasil prediksi dari tahun 2016-2020 untuk tahun 2021 memiliki hasil sebanyak 1054,688 hasil perhitungan RapidMiner dan hasil perhitungan pada microsoft excel yang mendapat hasil 767,641 yang memiliki selisih 28 %, sehingga dapat diambil kesimpulan untuk estimasi penyakit ganoderma pada tahun 2021 sebanyak 768 samapai dengan 1.055 batang yang terserang penyakit ganoderma. Prediksi ini akan dapat membantu pihak PT Nakau dalam menanggulangi penyakit ganoderma yang akan menyerang tanaman sawit pada tahun 2021.
GOVERNANCE EVALUATION ELECTRONIC SECURITY SYSTEM (ESS) (Case Study: ABC Central Bank) Aziz, RZ Abdul; Ikhsanudin, Anas; Hasibuan, M Said
Sinkron : jurnal dan penelitian teknik informatika Vol. 8 No. 2 (2024): Article Research Volume 8 Issue 2, April 2024
Publisher : Politeknik Ganesha Medan

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.33395/sinkron.v8i2.13540

Abstract

As we know, the role of the security system has a very important role for a state institution to provide security and comfort in carrying out its functions, such as the ABC central bank. A good security system is a security system that is supported by a reliable electronic security system and is composed of several components such as a CCTV monitoring system, Access Control System (ACS), Security Alarm System (SAS), and Fire Alarm System (FAS). This system is very necessary to provide support for the duties of these state institutions to protect devices, data and electronic infrastructure from potential threats and security risks. The main functions of electronic security systems include prevention, detection, response to incidents, and recovery after disturbances/disasters. For this reason, efforts are needed to provide an evaluation of the system maturity level and information security management as a form of risk management to maintain the continuity of system use. This research uses the INDEKS KAMI 4.1 to map ESS governance maturity and the OCTAVE Allegro method to analyze information security management. From the analysis carried out, it has been concluded that the ESS implementation has been operated well in accordance with the security system requirements and has reached a good level of governance maturity. Information security management analysis carried out using the OCTAVE Allegro method has succeeded in identifying information security management with the result that information security management has been implemented well. This is proven by the existence of indicators, namely CCTV recording data, log systems as information assets that have been managed and distributed according to authority
ANALISIS PENGARUH KEMEPIMPINAN, DISIPLIN KERJA, REWARD DAN PUNISHMENT MELALUI KEPUASAN KERJA TERHADAP KINERJA PEGAWAI PADA KANTOR KESYAHBANDARAN DAN OTORITAS PELABUHAN KELAS 1 PANJANG DIREKTORAT JENDERAL PERHUBUNGAN LAUT Esti Dwi Putri; RZ Abdul Aziz
Musytari : Neraca Manajemen, Akuntansi, dan Ekonomi Vol. 6 No. 8 (2024): Musytari : Neraca Manajemen, Akuntansi, dan Ekonomi
Publisher : Cahaya Ilmu Bangsa

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.8734/musytari.v6i8.4562

Abstract

Penelitian ini bertujuan untuk menganalisa pengaruh kepemimpinan, disiplin kerja, reward dan punishment melalui kepuasan kerja terhadap kinerja pegawai pada kantor Kesyahbandaran dan Otoritas Pelabuhan Kelas 1 Panjang Direktorat Jenderal Perhubungan Laut. Dalam penelitian ini menggunakan jenis penelitian kuantitatif, populasi pada penelitian ini adalah seluruh pegawai kantor Kesyahbandaran dan Otoritas Pelabuhan Kelas 1 Panjang dan sampling data diambil dengan menggunakan rumus perhitungan Slovin yaitu dengan hasil perhitungan 56dibulatkan menjadi 60 orang atau responden dengan cara melakukan penyebaran kuisioner. Data yang didapatkan atau diperoleh kemudian dilakukan pengolahan data dan dianalisa menggunakan Path Analys dengan pendekatan Partial Least Square (PLS) atau Structural Equation Modeling (SEM). Hasil akhir penelitian menunjukan bahwa variabel disiplin kerja berpengaruh secara signifikan terhadap variabel kepuasan kerja, variabel disiplin kerja tidak berpengaruh secara signifikan atau tidak mampu memoderasi terhadap variabel kinerja pegawai melalui kepuasan kerja, variabel kepemimpinan berpengaruh secara signifikan terhadap variabel kepuasan kerja, variabel kepemimpinan berpengaruh secara signifikan terhadap variabel kinerja pegawai, variabel reward dan punishment berpengaruh secara signifikan terhadap variabel kepuasan kerja, variabeel, variabel reward dan punishment berpengaruh secara signifikan terhadap variabel kinerja pegawai.
AUGMENTED REALITY ISTANA SEKALA BRAK LAMPUNG BERBASIS ANDROID Nurkholish Setya, Yoga; Aziz, RZ Abdul
JATI (Jurnal Mahasiswa Teknik Informatika) Vol. 8 No. 1 (2024): JATI Vol. 8 No. 1
Publisher : Institut Teknologi Nasional Malang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.36040/jati.v8i1.7323

Abstract

Pada penelitian ini teknologi Augmented Reality akan diterapkan sebagai media informasi kebudayaan dan pengetahuan untuk memperkenalkan Istana Sekala Brak Lampung yang merupakan salah satu cagar budaya dari suku Lampung, Sumatra berbasis Android. Metode pengembangan perangkat lunak yang digunakan pada penelitian ini metode Multimedia Development Life Cylce. Aplikasi ini berisikan informasi Sejarah Kerjaan Sekala Brak, infromasi gambar bentuk bangunan Istana Sekala Brak dalam bentuk 3D, dan marker sebagai media yang akan menampilkan tampilan 3D Augmented Reality, serta dapat menjalankan simulasi lokasi atau Virtual Tour sehingga pengguna dapat merasakan seperti berada di tempat aslinya. Objek 3D yang dihasilkan dibuat menggunakan aplikasi SketchUp, kemudian pembuatan aplikasi dilanjutkan menggunakan Unity3D. Berdasarkan hasil pengujian yang dilakukan pengguna, 1 dari 3 perangkat android tidak dapat berjalan karena tidak sesuai dengan batas minumin spesifikasi, namun sisanya yaitu, 2 dari 3 pengguna dapat berjalan sesuai dengan baik sehingga dapat disimpulkan aplikasi ini dapat berjalan dengan baik jika mengikuti syarat ketentuan yang sudah ditentukan. Manfaat yang dapat diberikan aplikasi ini kepada siswa pelajar, mahasiswa, masyarakat umum, khususnya masyarakat suku Lampung sebagai media yang interaktif dalam mengenal Bangunan Istana Sekala Brak dan juga sejarah Kerajaan Sekala Brak yang merupakan salah satu sejarah masyrakat Lampung.