Claim Missing Document
Check
Articles

Found 37 Documents
Search

Optimasi Persediaan Beras menggunakan Integer Linear Programming untuk Mengatasi Ketidakpastian Pasokan Studi Kasus Bulog Gorontalo Daud, Sriwati M.; Panigoro, Hasan S.; Arsal, Armayani; Wungguli, Djihad
Jurnal Sains Matematika dan Statistika Vol 11, No 2 (2025): JSMS Juli 2025
Publisher : Universitas Islam Negeri Sultan Syarif Kasim Riau

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.24014/jsms.v11i2.36254

Abstract

Abstrak                                                                                                  Perum BULOG Gorontalo berperan dalam penyediaan beras untuk menjamin ketahanan pangan. Penelitian ini bertujuan untuk mengoptimalkan biaya persediaan yang meliputi pemesanan dan penyimpanan beras guna menghindari kelebihan stok yang meningkatkan biaya, dengan mempertimbangkan penyediaan pasokan. Metode yang digunakan adalah Integer Linear Programming (ILP) untuk menentukan keputusan pemesanan dan penyimpanan yang optimal, serta analisis sensitivitas untuk mentransmisikan perubahan parameter dampak terhadap solusi optimal. Hasil optimasi menunjukkan bahwa pendekatan ILP berhasil menurunkan biaya persediaan sebesar 17,6% per tahun, dari Rp 208.423.972 menjadi Rp 171.813.600. Analisis sensitivitas mengungkap bahwa perubahan permintaan dan pasokan pasokan sebesar 10% dapat menyebabkan solusi optimal menjadi tidak layak, sementara perubahan kapasitas pasokan dan biaya pembelian memiliki dampak yang lebih fleksibel terhadap hasil optimasi. Kata Kunci: Optimasi, Persediaan, Integer Linear Programming, Analisis Sensitivitas. Abstrak Perum BULOG Gorontalo memegang peranan penting dalam penyediaan beras untuk menjamin ketahanan pangan. Penelitian ini bertujuan untuk mengoptimalkan pemesanan dan penyimpanan beras guna mencegah terjadinya kelebihan stok yang dapat meningkatkan biaya, dengan mempertimbangkan ketidakpastian pasokan. Metode yang digunakan adalah Integer Linear Programming (ILP) untuk menentukan keputusan pemesanan dan penyimpanan yang optimal, serta analisis sensitivitas untuk mengevaluasi dampak perubahan parameter terhadap solusi optimal. Hasil optimasi menunjukkan bahwa pendekatan ILP berhasil menurunkan biaya persediaan sebesar 17,6% per tahun, dari Rp208.423.972 menjadi Rp171.813.600. Analisis sensitivitas menunjukkan bahwa perubahan ketidakpastian permintaan dan pasokan sebesar 10% dapat membuat solusi optimal tidak dapat dilaksanakan, sedangkan perubahan kapasitas pasokan dan biaya pembelian memiliki dampak yang lebih fleksibel terhadap hasil optimasi. Kata Kunci : Persediaan, Optimasi, Integer Linear Programming, Analisis Sensitivitas.
Prediksi Wisatawan Mancanegara di Indonesia Menggunakan Metode SARIMAX dengan Efek Variasi Kalender Libur Nasional Pakaya, Desya Neydi Putri; Achmad, Novianita; Hasan, Isran K; Wungguli, Djihad; Abdussamad, Siti Nurmardia
Jurnal Riset Mahasiswa Matematika Vol 4, No 6 (2025): Jurnal Riset Mahasiswa Matematika
Publisher : Mathematics Department, Maulana Malik Ibrahim State Islamic University of Malang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.18860/jrmm.v4i6.34937

Abstract

Fluctuations in the number of foreign tourist arrivals often produce outlier values that can interfere with the accuracy of the forecasting model. This study uses a boxplot approach to detect outliers, followed by Natural Logarithm (ln) transformation as a treatment step. The Seasonal Autoregressive Integrated Moving Average with Exogenous Variables (SARIMAX) method is applied by considering three exogenous variables that show the effect of variations in the National Holiday calendar in the form of Nyepi Day, Idul Fitri Day and year-end holidays. The results of the analysis show that the three variables have a positive effect on the increase in the number of foreign tourist arrivals, where Nyepi Day makes the largest contribution compared to the other two holiday periods. Model 2 (0,1,1)(1,0,1)[12] was selected as the most optimal model based on the evaluation results of several models that have been compared. This model shows excellent performance, indicated by the Mean Absolute Percentage Error (MAPE) value of 3.75\% which indicates that the model has very high prediction accuracy. So that the SARIMAX model is effective in modeling and predicting the number of foreign tourist visits in Indonesia.
ANALISIS SISTEM ANTRIAN PADA BANK SULUTGO CABANG BINTAUNA MENGGUNAKAN MODEL ANTRIAN MULTI CHANNEL SINGLE PHASE Kintan Sakinah Kaluku; Nurwan Nurwan; Djihad Wungguli
JURNAL ILMIAH EKONOMI DAN MANAJEMEN Vol. 3 No. 7 (2025): Juli
Publisher : CV. KAMPUS AKADEMIK PUBLISING

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.61722/jiem.v3i7.5945

Abstract

. Proses antrian sering dijumpai dalam kehidupan sehari-hari di tempat tertentu, baik dalam skala kecil maupun besar dan memerlukan solusi yang optimal. Antrian sering terjadi dikarenakan banyak orang menginginkan layanan yang sama pada waktu yang bersamaan, sementara pada situasi itu proses pelayanan hanya dapat dilakukan satu persatu saja. Antrian pelayanan di bank adalah salah satu contoh permasalahan antrian, dimana bank merupakan suatu institusi penyelenggara layanan keuangan. Panjangnya antrian saat melakukan transaksi di bank yang menghabiskan banyak waktu seringkali menimbulkan ketidaknyamanan bagi nasabah. Unit Bank SulutGo Bintauna merupakan salah satu tempat Bank yang ramai dikunjungi oleh masyarakat. Terdapat dua teller dan satu customer service, sehingga model yang diterapkan saat ini yaitu multi channel single phase. Aturan pelayanan yang digunakan menurut urutan kedatangan nasabah menggunakan sistem FCFS/FIFO. Adapun tujuan dari penelitian ini adalah untuk menentukan hasil optimalisasi sistem antrian dan ukuran kinerja sistem antrian pada pelayanan teller Bank di Unit bank SulutGo Bintauna. Sistem antrian Multi Channel Single Phase digunakan karena hanya terdapat satu jenis pelayanan dan terdapat beberapa fasilitas pelayanan dalam sistem antrian tersebut. Hasil penelitian ini menunjukan bahwa ukuran kinerja selama lima hari diperoleh tingkat efisiensi kinerja dari ukuran steady state terpenuhi. Oleh karena itu, berdasarkan hasil penelitian ini, pelayanan teller pada unit Bank SulutGo Bintauna sudah optimal.
IMPLEMENTATION OF THE TAGUCHI METHOD WITH TRAPEZOIDAL FUZZY NUMBER IN THE TOFUPRODUCTION PROCESS Wungguli, Djihad; Isa, Jefri N.; Payu, Muhammad Rezky Friesta; Nurwan, Nurwan; Nasib, Salmun K; Junus, Stella
BAREKENG: Jurnal Ilmu Matematika dan Terapan Vol 17 No 3 (2023): BAREKENG: Journal of Mathematics and Its Applications
Publisher : PATTIMURA UNIVERSITY

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30598/barekengvol17iss3pp1313-1324

Abstract

Indonesians consume more tofu every week, proving that it is one of the country's most well-liked and potential food ingredients. Therefore, several people benefit from this positive potential as a business opportunity and improve the quality of their products as part of a market competition strategy. This study uses the Taguchi method and fuzzy logic to optimize the multi-response characteristic tofu production process. These multi-responses include water and protein content, each of which has the characteristics of "nominal is best" and "larger is better". In this experiment, three independent variables were varied: soybean soaking time, soybean porridge boiling time, and tofu lump pressing time. The experimental design used is the orthogonal matrix L9. This study aims to determine the optimal combination of independent variables and determine the contribution of each varible to the multi-response of water content and protein content simultaneously. The findings indicated that soaking soybeans for 4 hours, boiling soybean porridge for 70 minutes, and pressing tofu lumps for 20 minutes are the ideal settings to produce optimal multi-response simultaneously. Additionally, the duration of soybeans soaking contributed 14,74%, the duration of boiling soybean porridge contributed 29,50%, and the duration of pressing lumps of tofu contributed 38,18% to the multi-response.
Prediksi Harga Emas Dunia Menggunakan Deep Learning GRU dengan Optimasi Nadam Harmain, Ismail Saputra R.; Nurwan, Nurwan; Hasan, Isran K.; Wungguli, Djihad; Yahya, Nisky Imansyah
Jurnal Riset Mahasiswa Matematika Vol 4, No 6 (2025): Jurnal Riset Mahasiswa Matematika
Publisher : Mathematics Department, Maulana Malik Ibrahim State Islamic University of Malang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.18860/jrmm.v4i6.36007

Abstract

Volatilitas harga emas yang tinggi menuntut adanya metode prediksi yang andal untuk mendukung pengambilan keputusan investasi. Penelitian ini mengimplementasikan algoritma Gated Recurrent Unit (GRU) berbasis deep learning yang dioptimalkan menggunakan Nesterov-Accelerated Adaptive Moment Estimation (Nadam) untuk memprediksi harga emas harian.Model terbaik diperoleh dengan nilai Mean Squared Error (MSE) sebesar 0, 00012 pada data univariat dan 0, 00027 pada data multivariat. Mean Absolute Percentage Error (MAPE) yang diperoleh masing-masing sebesar 1,107% untuk data univariat dan 1,59% untuk data multivariat. Hasil tersebut mengindikasikan bahwa model GRU dengan optimasi Nadam memiliki performa prediksi yang tinggi, baik pada data deret waktu tanpa penambahan fitur maupun dengan penambahan fitur.
Pemodelan Regresi Robust dengan Estimasi Generalized-M untuk Penanganan Outlier pada Kasus Kusta di Indonesia Loleh, Linda Purnama Sari; Wungguli, Djihad; Rezky Friesta Payu, Muhammad; Nashar, La Ode
Griya Journal of Mathematics Education and Application Vol. 5 No. 3 (2025): September 2025
Publisher : Pendidikan Matematika FKIP Universitas Mataram

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.29303/griya.v5i3.811

Abstract

which attacks the skin, peripheral nerves, and other body organs except the central nervous system. New leprosy cases with visible disabilities are classified as Grade 2 disabled leprosy. The number of Grade 2 disabled leprosy cases is an indicator used to show success in early detection of new leprosy cases. However, the leprosy data in Indonesia for 2023 contains outliers that can affect the results of linear regression analysis. To address this issue, this study utilizes the robust regression method of generalized-M estimation, which is an extension of M-estimation. The objectives of this study are to obtain a robust regression model using generalized-M estimation and to identify significantly influential variables. The research findings indicate that these factors have a significant simultaneous impact on the number of leprosy cases with grade 2 disability, and partially, the factor of access to basic sanitation facilities has an influence on the number of leprosy cases with grade 2 disability with an R^2 value of 73%, which can be explained by the predictor variables in this study. Meanwhile, 27% is explained by other predictor variables not included in this study. From these results, it is hoped that the efforts of the government and relevant agencies can improve access to basic sanitation facilities for the prevention and control of leprosy cases in Indonesia.
Sifat Fundamental Pada Granum Eulerian Suaib A. Siraj; Asriadi; Djihad Wungguli; Hasan S. Panigoro; Nurwan; Nisky I. Yahya
Limits: Journal of Mathematics and Its Applications Vol. 21 No. 2 (2024): Limits: Journal of Mathematics and Its Applications Volume 21 Nomor 2 Edisi Ju
Publisher : Pusat Publikasi Ilmiah LPPM Institut Teknologi Sepuluh Nopember

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

Mathematical analysis has several important connections with graph theory. Although initially, they may seem like two separate branches of mathematics, there are relationship between them in several aspects, such as graphs as mathematical objects that can be analyzed using concepts from analytic mathematics. In graph theory, one often studies distance, connectivity, and paths within a graph. These can be further analyzed using analytic mathematics, such as in the structure of natural numbers. Literature studies on graph theory, especially Eulerian graphs, are interesting to explore. An Eulerian path in a graph G is a path that includes every edge of graph G exactly once. An Eulerian path is called closed if it starts and ends at the same vertex. The concept of granum theory as a generalization of undirected graphs on number structures provides a rigorous approach to graph theory and demonstrates some fundamental properties of undirected graph generalization. The focus of this study is to introduce the connectivity properties of Eulerian granum. The granum G(e,M) is called connected if for every u,v E M with u != v there exists a path subgranumG^' (e,M^' )c G(e,M)  where u,v E M^' and is called an Eulerian granum if there exists a surjective mapping O: [||E(G(e,M))|| + 1]-> M such that e(o(n),o(n+1))=1 for every n E [||E(G(e,M))||]. This property provides a deeper understanding of the structure and characteristics of Eulerian granum, which have not been fully comprehended until now.